Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

Рашид Алиевич Сюняев (к семидесятилетию со дня рождения) Рашид Алиевич Сюняев (к семидесятилетию со дня рождения)
27.02.2013 9:42 | Astronet

Рашид Алиевич Сюняев – один из лидеров мировой астрофизики, с именем которого связаны фундаментальные результаты современной теоретической астрофизики и космологии, вошедшиe в учебники и университетские курсы теоретической астрофизики и физической космологии во всем мире. 1 марта 2013 года ему исполняется 70 лет.

Рашид Алиевич родился в Ташкенте в семье уроженцев Пензенской губернии – инженера-строителя Али Сюняева и фармацевта Саиды Кильдеевой. По словам Р.А.Сюняева, большую роль в формировании его мироощущений и интересов сыграло общение с отцом, который из-за происхождения и ссылки семьи не имел возможности заниматься интересующим его делом, но всю жизнь посвятил самообразованию и имел широкие интересы и особое почтение к науке, любил и хорошо знал историю и литературу. После школы в Ташкенте Р.А.Сюняев с отличием окончил Московский Физико-Технический Институт в 1966 году.

В 1965 г. Р.А.Сюняев стал студентом-дипломником, а затем аспирантом академика Я.Б.Зельдовича в Институте Прикладной Математики АН СССР. Встреча с Я.Б.Зельдовичем и почти ежедневный контакт с ним в течение последующих 22 лет сыграли колоссальную роль в судьбе Р.А.Сюняева и способствовали формированию его как ученого, работающего на стыке теории и эксперимента. Работа с ЯБ была постоянной учебой, требовавшей максимальной самоотдачи, но и приносившей радость ежедневного познания нового и неизведанного. ЯБ умел поддерживать молодых и вселять в них глубочайший интерес к науке и веру в возможности эксперимента. Нет сомнений, что студенту Р.А.Сюняеву не могло повезти больше – Учитель у него был замечательный и уникальный.

Научные интересы Р.А.Сюняева охватывают широкий круг астрофизических проблем от физики элементарных процессов до физической космологии. Среди результатов, ставших неотъемлемой частью современной астрофизики – "стандартная" теория дисковой аккреции на черные дыры и нейтронные звезды (Шакура и Сюняев, 1973, 1976); формула Сюняева-Титарчука (1980) для спектра излучения, формирующегося при комптонизации низкочастотных фотонов в горячей плазме; предсказание влияния акустических волн в ранней Вселенной на угловые флуктуации реликтового излучения и на пространственное распределение галактик в окружающей нас Вселенной (1970); «эффект Сюняева-Зельдовича» (1972), позволяющий использовать скопления галактик в качестве мощного инструмента наблюдательной космологии. Студенты, изучающие астрофизику, узнают имя Р.А.Сюняева именно по этим результатам.

Теория аккреционных дисков Шакуры-Сюняева давно стала общепринятой при описании переноса вещества и энерговыделения в тесных двойных системах и при аккреции на сверхмассивные черные дыры. Эта же теория применяется и для описания протопланетных дисков. Статья Шакуры и Сюняева (1973) по теории акреции – самая цитируемая работа в мировой теоретической астрофизике (5870 ссылок согласно NASA ADS) и одна из самых цитируемых (среди почти трех миллионов работ) статей в современной астрофизике.

Аккрецирующие нейтронные звезды и черные дыры наблюдаются как мощные рентгеновские и гамма-источники. Основным механизмом формирования спектров их рентгеновского и гамма-излучения является комптонизация. Формула Сюняева-Титарчука (1980) стала ключевой при описании результатов наблюдений этих объектов. Точность формулы была подтверждена детальными расчетами, выполненными методом Монте-Карло (Поздняков, Соболь, Сюняев, 1983 г.).

С момента опубликования работ Р.А.Сюняева и Я.Б.Зельдовича (1972), посвященных тепловому эффекту понижения яркости микроволнового фона в направлении на богатые скопления галактик, прошло уже сорок лет. За это время «эффект Сюняева-Зельдовича» из красивой теоретической идеи превратился в один из наиболее продуктивных методов наблюдательной космологии, открывающий возможность определения основных космологических параметров, в том числе определения роли "темной энергии" во Вселенной и прямого измерения постоянной Хаббла. Этот эффект обнаружен и активно исследуется в направлении нескольких тысяч скоплений галактик. Спутник «Планк» и специально созданные для исследования SZ-эффекта South Pole Telescope, Atacama Cosmology Telescope, SZ-array открыли за последние годы более тысячи неизвестных ранее богатых скоплений галактик на красных смещениях z>0.5, используя тот факт, что яркость и частотный спектр эффекта не зависят от красного смещения.

В 1980 г. Р.А.Сюняев и Я.Б.Зельдович показали, что наблюдения реликтового излучения в направлении скоплений галактик позволяют измерять и их пекулярные скорости движения относительно реликтового излучения (кинематический эффект). Кинематический эффект начал работать на наблюдательную космологию лишь в 2011-2012 годах. Исследование различных проявлений "эффекта" входит в наблюдательную программу крупнейших радиотелескопов мира.

Р.А.Сюняев, совместно с Я.Б.Зельдовичем и В.Г.Куртом (1968 г.), рассчитал кинетику рекомбинации водорода в ранней Вселенной, показав, что темп этого процесса определяется двухфотонным распадом уровня 2s в атоме водорода. В 1970 г. Сюняев и Зельдович отметили важнейшее влияние задержки рекомбинации на формирование первичных угловых флуктуаций реликтового излучения и положение «поверхности последнего рассеяния». В 2006 г. Йенс Хлуба и Сюняев рассчитали спектр излучения, приходящего к нам от эпохи рекомбинации – это сдвинутые в тысячи раз (в радиодиапазон) УФ и оптические линии атомов и ионов водорода и гелия.

В 1969-1970 гг. Р.А.Сюняев и Я.Б.Зельдович детально исследовали термализацию реликтового излучения и процессы формирования планковского спектра в ранней Вселенной. Они показали, что любое энерговыделение после стадии электрон-позитронной аннигиляции и окончания ядерных реакций должно вести к двум типам специфических искажений спектра реликтового излучения. Ими впервые было найдено, на каком красном смещении z находятся «поверхность последнего рассеяния» (z~1100) и предложен метод, позволяющий найти положение «чернотельной фотосферы» (z~2106) нашей Вселенной.

Сюняев и Зельдович (1970 г.) предсказали существование акустических пиков в угловом распределении реликтового излучения и назвали их Сахаровскими осцилляциями. Угловой размер и амплитуды первых акустических пиков определяются значениями ключевых параметров Вселенной: постоянной Хаббла, барионной плотности и плотности темной материи и темной энергии во Вселенной. В 2000 г. акустические пики были обнаружены в ходе наблюдений с высотных баллонов. Спутники WMAP и PLANCK детально исследовали эти пики. В той же работе было предсказано существование барионных акустических осцилляций в пространственном распределении галактик во Вселенной. Сегодня наблюдения БАО стали одним из важнейших методов наблюдательной космологии.

В 1973 г. Т.М. Энеев, Н.Н.Козлов и Р.А.Сюняев выполнили пионерские численные расчеты приливного взаимодействия галактик. Р.А.Сюняев и Ю.Н.Гнедин (1974 г.) предсказали существование циклотронных линий в рентгеновских спектрах аккрецирующих рентгеновских пульсаров. Совместно с В.М.Лютым и А.М.Черепащуком (1973 г., 1976 г.) было дано объяснение оптических фотометрических эффектов, наблюдаемых в двойных рентгеновских системах Her X-1=HZ Her (рентгеновский нагрев звезды и диска) и Cyg X-1 (приливное искажение поверхности нормальной звезды). М.М.Баско и Р.А.Сюняев (1973) первыми рассмотрели эффекты взаимодействия рентгеновского излучения с поверхностью нормальной звезды в тесной двойной системе: нагрев поверхности звезды, отражение рентгеновских лучей и формирование индуцированного звездного ветра. В 1974 г. они совместно с Л.Г.Титарчуком впервые рассчитали рентгеновский спектр излучения, отраженного холодной звездной атмосферой. В 1975 г. Р.А.Сюняев совместно с А.Ф.Илларионовым продемонстрировал важность эффекта "пропеллера" в двойных системах, содержащих нейтронную звезду с сильным магнитным полем. Р.А.Сюняев с М.Л.Маркевичем и М.Н.Павлинским (1993 г.) предсказали наблюдаемое ныне мощное излучение в линии K-альфа железа от молекулярных облаков вблизи сверхмассивной черной дыры в ядре нашей Галактики, фронт которого распространяется со сверхсветовой скоростью. В 1999 и 2010 годах Н.А. Иногамов и Сюняев предложили неожиданную модель пограничного слоя на границе поверхности нейтронной звезды со слабым магнитным полем и аккреционного диска в ярких маломассивных рентгеновских двойных системах. Замедление вращения аккреционного потока от кеплеровской скорости в половину скорости света в диске до скорости вращения поверхности звезды приводит к мощному энерговыделению в узком слое и к силе давления света сравнимой с гравитацией. Погранслой представляет собой слой медленного меридионального растекания вещества по поверхности звезды, сопровождающегося образованием двух ярких колец равноудаленных от плоскости диска.

В 1974 году академик Р.З.Сагдеев пригласил Я.Б.Зельдовича и Р.А.Сюняева организовать Отдел теоретической астрофизики в Институте Космических Исследований АН СССР (ИКИ). В 1974 – 1982 годах Р.А.Сюняев возглавлял лабораторию в этом отделе, а в 1982 году основал в ИКИ Отдел астрофизики высоких энергий. С этого момента начался напряженный этап вхождения в экспериментальную рентгеновскую и гамма-астрономию. Рашид Алиевич осуществлял научное руководство отбором и разработкой аппаратуры, выбором программы наблюдений и обработкой данных трех наиболее успешных орбитальных астрофизических обсерваторий, запущенных в СССР и России – обсерватории РЕНТГЕН на модуле КВАНТ космической станции МИР и орбитальных обсерваторий ГРАНАТ и ИНТЕГРАЛ. Ярчайшим результатом обсерватории "РЕНТГЕН" стало открытие жесткого рентгеновского излучения от Сверхновой 1987А в Большом Магеллановом Облаке, связанного с радиоактивным распадом 56Ni и 56Со, синтезированных при взрыве звезды, испусканием гамма-квантов и последующей их комптонизацией из-за эффекта отдачи в холодной разлетающейся оболочке. Радиоактивный распад никеля-56, синтезированного в ходе ядерных реакций при гибели звезды, в кобальт-56, который в свою очередь распадается в привычное нам железо-56, является основным механизмом происхождения железа во Вселенной, а значит и на нашей Земле.

Среди результатов обсерватории "ГРАНАТ" – детальные рентгеновские карты центральной области Галактики, широкополосные спектры аккрецирующих черных дыр и нейтронных звезд, открытие десятков новых рентгеновских источников, в том числе ярчайшего из известных Галактических микроквазаров. Продолжает успешную работу на орбите обсерватория гамма-лучей ИНТЕГРАЛ, выведенная на высокоапогейную орбиту ракетой ПРОТОН в 2002 г. Среди ее результатов – измерение спектра аннигиляционного излучения холодных позитронов в области центра нашей Галактики (более 1043 позитронов аннигилируют в межзвездном газе каждую секунду).

Р.А.Сюняев является научным руководителем рентгеновской орбитальной обсерватории СПЕКТР-РЕНТГЕН-ГАММА. Это крупнейший совместный проект России и Германии в области астрофизики, нацеленный на решение фундаментальных вопросов космологии – природы темной энергии и темной материи, возникновения и роста сверхмассивных черных дыр, а также поиску объектов неизвестной природы. Этот спутник в случае успешной реализации должен открыть на рентгеновском небе более 3 миллионов ядер активных галактик - сверхмассивных черных дыр, излучающих за счет аккреции газа, и практически все богатые скопления галактик ( ~ 100 тысяч) в наблюдаемой Вселенной.

Р.А.Сюняев – Co-PI важнейшего эксперимента HFI на европейском космологическом спутникe «ПЛАНК».

Начиная с 1992 года академик Сюняев активно сотрудничает с кафедрой астрофизики Казанского Федерального Университета. При его непосредственном участии были достигнуты договоренности о завершении работ по созданию 1.5 м телескопа для КГУ в Ленинградском Оптико-Механическом Объединении в самые тяжелые годы для промышленности в России и об установке его на горе Бакырлытепе (высота 2500 м) в 40 км от Антальи в Турции. Турецкая сторона взяла на себя строительство дороги, линии электропередачи, башни телескопа, здания Обсерватории и гостиницы для наблюдателей, транспортировку телескопа в Турцию. Российско-Турецкий полутораметровый телескоп Казанского Университета и Академии Наук Татарстана стал таким образом первым крупным инструментом в составе Национальной Обсерватории Турции. 60% его наблюдательного времени принадлежит уже более 14 лет российским ученым (45% астрономам Казани и 15% ученым ИКИ РАН).

Р.А.Сюняев – лауреат многих премий и наград, в том числе – премии Бруно Росси Американского Астрономического Общества (AAS) (1989 г.), Золотой Медали Королевского Астрономического Общества (1995 г.), Золотой Медали сэра Месси Королевского Общества и КОСПАР (1998 г.), Золотой Медали Катерин Вольф Брюс Тихоокеанского Астрономического Общества (2000 г.), премии Хайнемана Американского института физики и AAS (2003 г.), премии Грубера по космологии и Золотой медали Международного астрономического союза (2003 г.), премии Крафурда по Астрономии и Золотой Медали Королевской Академии Наук Швеции (2008), награды им. Рассела – высшего отличия AAS (2008), медали им. Карла Шварцшильда (высшая награда Астрономического общества Германии) (2008), Золотой Медали и Международной научной премии по физике им. Короля Фейсала (2009), премии Киото и Золотой Медали в категории “Фундаментальные науки” (2011), Золотой Медали Бенджамина Франклина по физике (2012). В 2000 г. Р.А.Сюняев получил Государственную премию России за результаты наблюдений черных дыр и нейтронных звезд приборами орбитальной обсерватории ГРАНАТ, в 2002 г. – премию РАН имени Александра Фридмана по гравитации и космологии, в 2011 году ему было присвоено почетное звание “Россиянин года”

В 1984 году Р.А.Сюняев был избран членом-корреспондентом Академии Наук СССР, а в 1992 году – действительным членом РАН. Он иностранный член Национальной академии наук США, Лондонского Королевского общества, Национальной aкадемии наук Германии “Леопольдина”, Королевской aкадемии наук и искусств Нидерландов и Европейской Академии (Academia Europaea); почетный член Академий наук Татарстана и Башкортостана и ряда других академий и научных обществ.

Р.А.Сюняев заведует лабораторией Теоретической астрофизики в ИКИ РАН, он – один из директоров Института астрофизики Общества имени Макса Планка и главный редактор журнала «Письма в Астрономический журнал», почетный профессор Казанского Федерального Университета и Университета Людвига Максимилиана в Мюнхене, почетный член ФТИ им.Иоффе и Морин и Джон Хендрикс приглашенный профессор Института Высших Исследований в Принстоне.

Академик Сюняев окружен молодежью. Он – научный руководитель активной и яркой группы ученых Института Космических Исследований РАН, работающей в области рентгеновской астрономии и космологии. Ряд его учеников стали известными учеными в области астрофизики высоких энергий, теоретической астрофизики, обработки и интерпретации данных орбитальных обсерваторий. Среди них – член-корреспондент РАН, лауреат Государственной премии России для молодых ученых, 8 докторов физико-математических наук, имеющих мировую известность. Успешно защищают диссертации ученики его учеников.

Со свойственной ему энергией Р.А.Сюняев продолжает активно работать по широкому кругу научных проблем. Среди них – физика рекомбинации водорода и гелия во Вселенной, спектральные детали в излучении микроволнового фона Вселенной, турбулентные движения и физические процессы в горячем газе скоплений галактик, теория пограничного слоя при аккреции на нейтронные звезды, аккреция на сверхмассивные черные дыры, звездообразование в далеких галактиках, необычная физикa процессов в окрестности сверхмассивной черной дыры в нашей Галактике и многое другое.

Друзья, коллеги и ученики сердечно поздравляют Рашида Алиевича с юбилеем и желают ему новых теоретических идей, успеха астрофизических проектов и замечательных наблюдательных данных.

проф. М.Р.Гильфанов, член-корр. РАН Е.М.Чуразов
Институт Космических Исследований РАН

Приложение 1. Рисунки, поясняющие текст.

а) космология


Рис.1. Искажения в спектре реликтового излучения, связанные с рекомбинацией водорода и гелия в ранней Вселенной (Хлуба и Сюняев, 2008 г.), смещены космологическим красным смещением в радиодиапазон. Излучение водорода приведено синим цветом, суммарное излучение водорода и гелия (обе рекомбинации) – красным.


Рис.2. Этот рисунок демонстрирует эволюцию адиабатических возмущений плотности в расширяющейся Вселенной. На радиационно-доминированной стадии расширения растущие возмущения плотности превращаются в стоячие звуковые волны, как только характерные размеры возмущения становятся меньше горизонта в то время. На момент пересечения горизонта (а он зависит от размера возмущения) генерируемые звуковые волны имеют одинаковую фазу. До рекомбинации рассеяние фотонов на свободных электронах приводило к тому, что барионное вещество и излучение были тесно связаны и двигались совместно в звуковых волнах. В ходе рекомбинации водорода за сравнительно короткое время Вселенная становится прозрачной для излучения. В результате фотоны перестают взаимодействовать с электронами. Из-за разной длины волны (определяемой размером возмущения) звуковые волны подходят к моменту рекомбинации с различными фазами, что приводит к характерной зависимости амплитуды возмущения от массы, охваченной возмущением. Эта картина приводит к двум важнейшим следствиям:

1. Зависимость распределения галактик от масштаба в окружающей нас Вселенной сохранило память об этой зависимости амплитуды возмущений от масштаба. Она наблюдается в данных Слоановского обзора неба в видимо