Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

The R.A.P. Project (Reviews of Astro-Ph)

Гравитационные волны
(Архив Гравитационные волны:
v.2, 2003, v.1, 2002-2003)

Выпуск 202. 17-31 декабря 2008

обзор arxiv:0812.2325 Моделирование конечного состояния после слияния двух черных дыр (Modelling the final state from binary black-hole coalescences)
Authors: Luciano Rezzolla
Comments: 17 pages, CQG, special issue LISA-7

Слияния черных дыр - весьма актуальная тема. Во-первых, в связи с тем, что в картине иерархического формирования галактик они происходят достаточно часто и важны для понимания галактической эволюции. Во-вторых, потому что есть надежда регистрировать гравитационные волны от слияний. Расчеты слияний очень сложны и требуют много процессорного времени. Поэтому есть большая нужда в аналитических приближениях. Им-то в основном и посвящен обзор. Статья на удивление доступно написана, поэтому советую ее просмотреть.


Выпуск 196. 01-12 октября 2008

arxiv:0810.0283 Обзорный поиск периодических гравитационных волн по данным сенса S5 LIGO (All-sky LIGO search for periodic gravitational waves in the early S5 data)
Authors: LIGO Scientific Collaboration
Comments: 6 pages, 1 figre

Авторы приводят очередные верхние пределы, которые становятся все интереснее и интереснее. На этот раз речь идет о поиске по всему небу периодического сигнала по данным LIGO на частотах 50-1100 Гц. Для нейтронных звезд с экваториальной эллиптичностью выше одной миллионной это дает предел на расстояние 500 пк. Т.е., вплоть до этого расстояния нет быстровращающихся нейтронных звезд с таким сжатием.


Выпуск 194. 01-11 сентября 2008

обзор arxiv:0809.0695 Гравитационно-волновой сигнал от сверхновых с коллапсом ядра (The Gravitational Wave Signature of Core-Collapse Supernovae)
Authors: Christian D. Ott
Comments: Topical Review, submitted to CQG. 49 pages, 13 figures

Большой обзор по ожидаемым гравитационно-волновым сигналам от сверхновых, связанных со взрывами массивных звезд.


arxiv:0809.1280 Массивная двойная из двух черных дыр в OJ287 и тесты общей теории относительности (A massive binary black-hole system in OJ287 and a test of general relativity)
Authors: M. J. Valtonen et al.
Comments: 14 pages, 3 figures, published in Nature

Любопытный результат. В квазаре OJ287 наблюдаются периодические вспышки с периодом 12 лет (две вспышки за период). Считается, что это связано с существованием там двойной черной дыры. Ясно, что, вращаясь друг вокруг друга, черные дыры, согласно ОТО, должны излучать гравволны и сближаться. Последнюю вспышку (сентябрь 2007) удалось предсказать с точностью до дня. Если бы не было гравволн, то вспышка произошла бы на 20 дней позже.

Модель для такого поведения квазара двое из авторов обсуждаемой статьи предложили еще в 1996 году. Одна из черных дыр два раза за период пересекает аккреционный диск вокруг второй, что и приводит к вспышкам. Отмечу, что все-таки это лишь одно из возможных объяснений.

Сам источник был известен как переменная звезда еще в 19 веке, в 1968 г. он был идентифицирован как квазар, так что статистика по наблюдениям его вспышек набралась уже порядочная. Но лишь в прошлом году данных оказалось достаточно, чтобы попытаться с точностью до нескольких дней предсказать следующую вспышку (скажем, в 1996 году авторы еще не могли это сделать).

Обсудить в ЖЖ-сообществе ru_astroph.
Обсудить на Астрофоруме в Научной панораме.


обзор arxiv:0809.1602 Гравитационно-волновая астрономия (Gravitational Wave Astronomy)
Authors: Kostas D. Kokkotas
Comments: 22 pages, 2 figures

Хороший обзор, охватывающий все основные вопросы, связанные с гравитационно-волновой астрономией, кроме тех, что связаны с конкретными установками. Рассмотрены основы физики гравволн, источники, принципы регистрации.


Выпуск 192. 01-14 августа 2008

arxiv:0808.1594 Очень высокоточная VLBI-астрометрия для пульсара PSR J0437-4715 и приложения к теориям гравитации (Extremely high precision VLBI astrometry of PSR J0437-4715 and implications for theories of gravity)
Authors: A. T. Deller, J.P.W. Verbiest, S.J. Tingay, M. Bailes
Comments: 11 pages, 1 Figure, submitted to ApJL

Авторы рассказывают о точном определении (точность около 1%) параллакса до самого близкого (156 пк) миллисекундного двойного пульсара и о том, что из этого можно извлечь. А извлечь можно немало, т.к. для таких объектов есть независимые методы определения расстояния. Эти независимые методы основаны на некоторых предположениях, которые можно проверять, используя точный тригонометрический параллакс. Среди этих преположений во-первых надо отметить постоянство постоянной тяготения (ньютоновой). И авторы приводят самый жесткий предел на ее производную. Во-вторых, это неизвестные массивные планеты на задворках солнечной системы. И в третьих, гравитационно-волновой шум.

Подробнее об измерении параллаксов пульсаров с помощью VLBI см. arxiv:0808.1598. В частности, там рассказывается об измерениях с субмиллиарксекундной точностью (точно определено расстояние до пульсара на ~2.5 kpc от нас).


Выпуск 188. 10-23 июня 2008

arxiv:0806.1591 Выделение сверхмассивных черных дыр с помощью LISA (Resolving Super Massive Black Holes with LISA)
Authors: Stanislav Babak, Mark Hannam, Sascha Husa, Bernard Schutz
Comments: 4 pages, 1 figure

Космический лазерный интерферометр LISA будет регистрировать слияния сверхмассивных черных дыр. Спрашивается, можем ли мы достаточно точно определить, в какой галактике произошло слияние? Авторы показывают, что с учетом того, что мы можем рассчитать, как должен выглядеть сигнал (и от самого слияния и т.н. "звон" после него), положение можно будет определять достаточно точно. Для половины систем на z=1 положение будет определяться с точностью 3 угловые минуты, а для 20 процентов - одна угловая минута.


Выпуск 186. 16-31 мая 2008

arxiv:0805.4758 Побит предел на гравитационные волня от пульсара в Крабе по данным и замедлении (Beating the spin-down limit on gravitational wave emission from the Crab pulsar)
Authors: The LIGO Scientific Collaboration: B. Abbott, et al
Comments: 6 pages, 1 figure

По результатам нескольких месяцев наблюдений команда LIGO смогла поставить прямой (т.е. полученный по данным гравволнового детектора) предел на гравизлучение от пульсара в Крабе. И предел этот лучше косвенного предела, полученного по детальному таймингу пульсара.

С одной стороны, результат нулевой. С другой - LIGO еще раз показывает, что пределы, устанавливаемые этим экспериментом, лучше косвенных.


arxiv:0805.2384 Текущее состояние проекта CLIO (Current status of the CLIO project)
Authors: K. Yamamoto et al.
Comments: 8 pages, 9 figures, Amaldi7 proceedings, J. Phys.: Conf. Ser.

CLIO - Cryogenic Laser Interferometer Observatory. Это прототип японского проекта LCGT (Large-scale Cryogenic Gravitational Telescope). Он находится в шахте Камиока, где будет строиться и LGCT.

CLIO - небольшой проект, длина плеча всего лишь 100 метров. Соответственно, его задачи не научные, а технические. Пока прототип успешно отработал при комнатной температуре, а при работе в режиме с охлаждением выявились проблемы. Обо всем этом и ближайших планах - в статье.


Выпуск 185. 01-15 мая 2008

arxiv:0805.1420 Влияние гравитационно-волновой отдачи на динамику и рост сверхмассивных черных дыр (Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes)
Authors: Laura Blecha, Abraham Loeb
Comments: 15 pages, 15 figures

При слиянии черных дыр, получающийся объект приобретает линейный импульс. Это называют гравитационно-волновой ракетой. В последние годы эффект начали учитывать в моделях иерархического скучивания галактик. Авторов интересует поведение уже сверхмассивных черных дыр, то, как они будут двигаться, аккрецировать и тп. с учетом того, что в результате слияний они получают достаточно высокие (сотни км в сек) скорости.

При скорости отдачи 100 км/с черная дыра осядет обратно в центр галактики через миллион лет (амплитуда "бултыханий" порядка 30 пк). Чем выше скорость - тем дольше будет "болтание" и больше амплитуда. Интересно, что величина полученной скорости мало влияет на набор массы черной дырой за время "бултыхания" в галактике, т.е. до оседания в центр (другое дело, что чем выше скорость - тем дольше "болтается"). К сожалению, обнаружить черные дыры, сильно смещенные от центров галактик непросто, т.к. чем больше смещение, тем короче активная фаза квазара.


Выпуск 183. 01-20 апреля 2008

arxiv:0804.0594 Аккуратный расчет сливающихся двойных с нейтронными звездами: прямой и задержанный коллапс в черную дыру (Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole)
Authors: Luca Baiotti, Bruno Giacomazzo, Luciano Rezzolla
Comments: 33 pages, 29 figures, submitted to Phys. Rev. D

Авторы представляют новый детальный расчет слияния двух нейтронных звезд. Предмет особого интереса авторов ? коллапс в черную дыру. В самом деле, обычно суммарная масса двух нейтронных звезд превосходит предел устойчивости относительно коллапса в черную дыру. Коллапс может происходить сразу после слияния или же с некоторой задержкой. Задержка связана с тем, что быстрое дифференциальное вращение может какое-то время удерживать объект от схлопывания.

Расчеты такого процесса крайне сложны, и даже представляемые результаты далеки от реальной ситуации. Авторы обсуждают, каковы могут быть, например, эффекты магнитных полей, не учитываемые в данных моделях. Кроме того, пока было использовано достаточно примитивное уравнение состояния вещества нейтронных звезд.


обзор arxiv:0804.1500 Состояние и перспективы космомикрофизики в Европе (Status and Perspectives of Astroparticle Physics in Europe)
Authors: Christian Spiering
Comments: 16 pages, 20 figures. To be published in Astronomische Nachrichten

Astroparticle Physics (я буду использовать удачный перевод "космомикрофизика") завоевала статус самостоятельной дисциплины на стыке астрофизики, физики элементарных частиц (и ускорительной, и космических лучей) и космологии. Разумеется, часто невозможно (да и не нужно) точно определить является ли данная работа или проект "космомикрофизическим" или его лучше называть как-то иначе. Как бы то ни было ? Область характеризуется еще и тем, что в ней осуществляются очень дорогие проекты. Поэтому различные агентства строят долгосрочные планы. В статье дается очень интересный обзор того, что планирует в этой области Европа на ближайшие 10 лет.

Основные вопросы, которые ставят перед собой в данной программе ученые, таковы:

  • Что такое темная материя?
  • Каково время жизни протона?
  • Какова роль нейтрино в космологической эволюции?
  • Что можно узнать с помощью нейтрино о внутреннем строении Солнца, Земли, а также о физике сверхновых?
  • Каково происхождение космических лучей и какие астрономические источники излучают на очень высоких энергиях.
  • Что могут сказать гравитационные волны и бурных астрофизических феноменах и о природе гравитации?

    Первым стоит вопрос о природе темной материи. Здесь основными кандидатами являются нейтралино и аксионы. Что делается? Во-первых, идут лабораторные эксперименты по прямому детектированию частиц темной материи. В этой области европейцы, пожалуй, активнее других, и планируется продолжать поиски. Во-вторых, есть возможность увидеть частицы, являющиеся продуктами распада или аннигиляции частиц темной материи, например, гамма-кванты. У европейцев сейчас летает спутник PAMELA, от которого можно ожидать интересных результатов до запуска более мощного американского AMS. Однако, похоже, что у PAMELA есть какие-то трудности. В гамма-диапазоне у европейцев есть небольшой спутник AGILE. Планируемый в ближайшие месяцы к запуску американский GLAST будет намного эффективнее. Кроме того, можно искать продукты распада с помощью наземных гамма-телескопов, и тут с H.E.S.S. и MAGIC европейцы впереди планеты всей. Европейские планы по постройке большого морского нейтринного детектора потихоньку претворяются в жизнь, но очень потихоньку (об этом см. ниже). Наконец, в третьих, кое-что могут дать ускорительные эксперименты, и здесь, конечно, все надежды на LHC.

    Что касается темной энергии, то тут Европа ограничивается стандартными астрономическими проектами в области наблюдательной космологии. Самым важным, наверное, в ближайшие 10 лет будет запуск спутника Planck (октябрь 2008 года). Кроме того, планируются обзоры в различных диапазонах спектра, но это чистая астрономия, которую космомикрофизика поддерживает морально.

    Следующим пунктом стоит поиск распада протона. Для обнаружения надо строить подземные детекторы типа СуперКамиоканде, только на порядок больше. Пока идет проработка нескольких подходов (можно перечислить несколько названий проектов LENA, GLACIER, MEMPHYS, LAGUNA). Планируется, что к 2010 году будет выбран проект. Однако, все еще может сильно замедлиться. Стоимость установки будет порядка полумиллиарда евро. С такими проектами европейцы любят тянуть, поскольку нужно международная кооперация, а "у всех свои проблемы". Разумеется, такой детектор будет и прекрасным нейтринным детектором.

    Теперь о "ловле нейтрино за бороду". Здесь интересны не только эксперименты типа морских детекторов с объемом порядка кубического километра. Во-первых, идут попытки померить массу нейтрино в лаборатории по измерению спектра электронов при бета-распаде (эксперимент KATRINA в Германии). Во-вторых, интересны исследования двойного безнейтринного бета-распада. Они должны дать ответ на вопрос о том, являются ли нейтрино майорановскими или дираковскими. Двойной безнейтринный бета-распад возможен только, если нейтрино майорановские.

    Космические лучи. Европа активнейшим образом участвует в проекте Оже. Через несколько лет начнется монтаж северной части установки в США (южная полностью готова и работает). В северной части 45 процентов принадлежит Европе. Хотя чаще говорят о космических лучах сверхвысоких энергий, однако и на меньших энергиях есть еще немало нерешенных проблем. Для их разрешения строят отдельные детекторы. Один из детекторов стоит в Германии, и он будет продолжать свою работу.

    Гамма-астрономия. Европейцы не собираются останавливаться на успехах, достигнутых группами H.E.S.S. и MAGIC. Разрабатывается проект гораздо более крупной сети наземных гамма-телескопов. По всей видимости будет две сети (северная и южная) с несколько разными параметрами, оптимизированными для изучения галактических источников (юг) и внегалактических (север).

    Крайне заманчиво начать регистрировать нейтрино высоких энергий. Это возможно с помощью километровых детекторов в воде или льду. Пока в Антакртиде идет монтаж IceCube, европейцы тестируют в Средиземном море несколько прототипов водных детекторов. О едином европейском детекторе пока идут переговоры. Рано или поздно он наверняка будет построен, но какая-то конкретная информация о дизайне и тп. отсутствует. Кроме того, обсуждаются проекты косвенной регистрации нейтрино очень высоких энергий по радиоизлучению. В качестве рабочего тела тут может выступать, например, Луна.

    Наконец, последняя тема связана с гравитационными волнами. В Европе работают VIRGO и GEO600. Апгрейд VIRGO позволит получить прибор, который действительно сможет иметь приемлемый темп регистрации слияний нейтронных звезд и черных дыр. Планируются более крупные установки (Einstein Telescope), но ясно, что даже при оптимистическом развитии событий их сооружение не попадает в ближайшие 10 лет. Что касается космических детекторов, то тут ESA сотрудничает с NASA в деле создания LISA. Пока обсуждается дата запуска 2018 год. Но, скорее всего, она будет несколько отодвинута. В 2010 году европейцы должны запустить прототип. Если с ним все пройдет удачно, то, наверное, появится реальных график реализации большого основного проекта.

    Итого. Сейчас космомикрофизика находится на этапе, когда можно успеть снять сливки. Правда, требуется строить очень дорогие и технически сложные установки на земле, под землей, под водой и в космосе. В конце статьи автор приводит сводку проектов (и суммы), которые будут реализовываться в ближайшие 10 лет. Похоже, что Европа не отстает от США, или отстает не сильно. Ну на ее второе место покушаться вроде бы и некому.

    Выпуск 182. 18-31 марта 2008

    миниобзор arxiv:0803.3627 Космология с черными дырами (и, возможно, белыми карликами) (Cosmological Physics with Black Holes (and Possibly White Dwarfs))
    Authors: Kristen Menou, Zoltan Haiman, Bence Kocsis
    Comments: 8 pages, To appear in "Jean-Pierre Lasota, X-ray binaries, accretion disks and compact stars" New Astronomy Reviews, eds. M.A. Abramowicz and O. Straub (Elsevier, 2008)

    Авторы рассматривают вопрос о том, что нового мы можем узнать благодаря детектору LISA с учетом того, что можно будет точно определить из какой галактики пришел сигнал (возможно, что это можно будет сказать даже до пика всплеска). Статья прежде всего интересна объяснением некоторых возможностей и их обсуждением. В частности, можно будет ограничивать альтернативные теории гравитации, т.к. можн буде определять задержку между приходом фотонного и гравитационного сигналов. Кроме того, наблюдения на LISA дадут независимую оценку расстояния до галактик по их гравитационно-волновому сигналу, что также очень интересно.


    Выпуск 181. 01-17 марта 2008 года

    arxiv:0803.0003 Поярчение аккреционного диска за счет вязкой диссипации гравитационных волн при слиянии сверхмассивных черных дыр (Brightening of an Accretion Disk Due to Viscous Dissipation of Gravitational Waves During the Coalescence of Supermassive Black Holes)
    Authors: Bence Kocsis, Abraham Loeb
    Comments: 4 pages, 2 figures, submitted to Physical Review Letters

    Красивый результат. Авторы показывают, что при слиянии двух сверхмассивных черных дыр будут интересные наблюдательные эффекты в электро-магнитном излучении.

    Сверхмассивные черные дыры сливаются при слияниях галактик. Поэтому вокруг дыр не пусто - много газа. Соответственно, будет аккреционный диск. Именно в диске и будет происходить диссипация энергии гравволн. Оказывается, что хотя волны будут очень слабо "раскачивать" диск, тем не менее этого достаточно, чтобы за недели (а то и годы) до полного слияния возникал наблюдаемый сигнал. Кроме того, конечно же должен быть сигнал и от самого слияния. Интересно, что он придет к нам на несколько часов (или даже дней) позже гравитационного сигнала (пока там диск переконвертирует гравитационные волны в электро-магнитные).

    Так что авторы полагают, что во-первых, можно надеяться увидеть сливающиеся черные дыры и до LISA (хотя, разумеется, LISA тут ничем не заменишь: увидеть сигнал, косвенно связанный со слиянием, совсем не тоже самое, что увидеть сам гравитационно-волновой сигнал). Во-вторых, уже после запуска LISA стоит ловить электро-магнитные сигналы, соответствующие наблюдающимся гравитационно-волновым.


    arxiv:0803.0376 Поиск гравитационных волн, связанных с GRB 050915a, используя детектор Virgo (Search for gravitational waves associated with GRB 050915a using the Virgo detector)
    Authors: The Virgo collaboration
    Comments: 26 pages, 10 figures

    Приводится верхний предел на гравитационный сигнал от гамма-всплеска GRB 050915a.


    Выпуск 180. 14-29 февраля 2008 года

    arxiv:0802.2023 LISACode: научный симулятор LISA (LISACode : A scientific simulator of LISA)
    Authors: Antoine Petiteau et al.
    Comments: 22 pages, Physical Review D 77, 023002 (2008) 11

    Тренироваться надо на кошках. Или на компьютерных моделях. Поэтому при разработке крупных научных проектов разные группы занимаются роазработкой компьютерных симуляторов установки. В данном случае речь идет о космическом гравитационно-волновом детекторе LISA.

    Программа позволяет рассчитывать чувствительность детектора и сигналы от источников с известными свойствами. Программа находится в свободном доступе.


    Выпуск 179. 01-14 февраля 2008 года

    arxiv:0802.0393 Поиск гравитационных волн в данных LIGO по триггерам от гамма-всплесков (GRB-triggered searches for gravitational waves in LIGO data)
    Authors: Alexander Dietz, for the LIGO Scientific Collaboration
    Comments: 5 pages, 3 figures, contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 2007

    Описано, как сейчас работают детекторы LIGO, а также, как в данных этих детекторов искали сигналы в моменты, определяемые наблюдениями гамма-всплесков. Ничего не найдено, но пределы уже весьма интересные. В основном речь идет о пределе на короткий всплеск GRB 070201, который проецируется на М31. Если местом всплеска и в самом