Астронет: С. Б. Попов/ГАИШ Классификация обзоров 2-й версии за 04/2003 - ... The R.A.P. Project (Reviews of Astro-Ph) http://variable-stars.ru/db/msg/1189710/gw.html |
Гравитационные волны
(Архив Гравитационные волны: v.2, 2003,
v.1, 2002-2003)
Authors: Luciano Rezzolla
Comments: 17 pages, CQG, special issue LISA-7
Слияния черных дыр - весьма актуальная тема. Во-первых, в связи с тем, что в картине иерархического формирования галактик они происходят достаточно часто и важны для понимания галактической эволюции. Во-вторых, потому что есть надежда регистрировать гравитационные волны от слияний. Расчеты слияний очень сложны и требуют много процессорного времени. Поэтому есть большая нужда в аналитических приближениях. Им-то в основном и посвящен обзор. Статья на удивление доступно написана, поэтому советую ее просмотреть.
Authors: LIGO Scientific Collaboration
Comments: 6 pages, 1 figre
Авторы приводят очередные верхние пределы, которые становятся все интереснее и интереснее. На этот раз речь идет о поиске по всему небу периодического сигнала по данным LIGO на частотах 50-1100 Гц. Для нейтронных звезд с экваториальной эллиптичностью выше одной миллионной это дает предел на расстояние 500 пк. Т.е., вплоть до этого расстояния нет быстровращающихся нейтронных звезд с таким сжатием.
Authors: Christian D. Ott
Comments: Topical Review, submitted to CQG. 49 pages, 13 figures
Большой обзор по ожидаемым гравитационно-волновым сигналам от сверхновых, связанных со взрывами массивных звезд.
Authors: M. J. Valtonen et al.
Comments: 14 pages, 3 figures, published in Nature
Любопытный результат. В квазаре OJ287 наблюдаются периодические вспышки с периодом 12 лет (две вспышки за период). Считается, что это связано с существованием там двойной черной дыры. Ясно, что, вращаясь друг вокруг друга, черные дыры, согласно ОТО, должны излучать гравволны и сближаться. Последнюю вспышку (сентябрь 2007) удалось предсказать с точностью до дня. Если бы не было гравволн, то вспышка произошла бы на 20 дней позже.
Модель для такого поведения квазара двое из авторов обсуждаемой статьи предложили еще в 1996 году. Одна из черных дыр два раза за период пересекает аккреционный диск вокруг второй, что и приводит к вспышкам. Отмечу, что все-таки это лишь одно из возможных объяснений.
Сам источник был известен как переменная звезда еще в 19 веке, в 1968 г. он был идентифицирован как квазар, так что статистика по наблюдениям его вспышек набралась уже порядочная. Но лишь в прошлом году данных оказалось достаточно, чтобы попытаться с точностью до нескольких дней предсказать следующую вспышку (скажем, в 1996 году авторы еще не могли это сделать).
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Authors: Kostas D. Kokkotas
Comments: 22 pages, 2 figures
Хороший обзор, охватывающий все основные вопросы, связанные с гравитационно-волновой астрономией, кроме тех, что связаны с конкретными установками. Рассмотрены основы физики гравволн, источники, принципы регистрации.
Authors: A. T. Deller, J.P.W. Verbiest, S.J. Tingay, M. Bailes
Comments: 11 pages, 1 Figure, submitted to ApJL
Авторы рассказывают о точном определении (точность около 1%) параллакса до самого близкого (156 пк) миллисекундного двойного пульсара и о том, что из этого можно извлечь. А извлечь можно немало, т.к. для таких объектов есть независимые методы определения расстояния. Эти независимые методы основаны на некоторых предположениях, которые можно проверять, используя точный тригонометрический параллакс. Среди этих преположений во-первых надо отметить постоянство постоянной тяготения (ньютоновой). И авторы приводят самый жесткий предел на ее производную. Во-вторых, это неизвестные массивные планеты на задворках солнечной системы. И в третьих, гравитационно-волновой шум.
Подробнее об измерении параллаксов пульсаров с помощью VLBI см. arxiv:0808.1598. В частности, там рассказывается об измерениях с субмиллиарксекундной точностью (точно определено расстояние до пульсара на ~2.5 kpc от нас).
Authors: Stanislav Babak, Mark Hannam, Sascha Husa, Bernard Schutz
Comments: 4 pages, 1 figure
Космический лазерный интерферометр LISA будет регистрировать слияния сверхмассивных черных дыр. Спрашивается, можем ли мы достаточно точно определить, в какой галактике произошло слияние? Авторы показывают, что с учетом того, что мы можем рассчитать, как должен выглядеть сигнал (и от самого слияния и т.н. "звон" после него), положение можно будет определять достаточно точно. Для половины систем на z=1 положение будет определяться с точностью 3 угловые минуты, а для 20 процентов - одна угловая минута.
Authors: The LIGO Scientific Collaboration: B. Abbott, et al
Comments: 6 pages, 1 figure
По результатам нескольких месяцев наблюдений команда LIGO смогла поставить прямой (т.е. полученный по данным гравволнового детектора) предел на гравизлучение от пульсара в Крабе. И предел этот лучше косвенного предела, полученного по детальному таймингу пульсара.
С одной стороны, результат нулевой. С другой - LIGO еще раз показывает, что пределы, устанавливаемые этим экспериментом, лучше косвенных.
Authors: K. Yamamoto et al.
Comments: 8 pages, 9 figures, Amaldi7 proceedings, J. Phys.: Conf. Ser.
CLIO - Cryogenic Laser Interferometer Observatory. Это прототип японского проекта LCGT (Large-scale Cryogenic Gravitational Telescope). Он находится в шахте Камиока, где будет строиться и LGCT.
CLIO - небольшой проект, длина плеча всего лишь 100 метров. Соответственно, его задачи не научные, а технические. Пока прототип успешно отработал при комнатной температуре, а при работе в режиме с охлаждением выявились проблемы. Обо всем этом и ближайших планах - в статье.
Authors: Laura Blecha, Abraham Loeb
Comments: 15 pages, 15 figures
При слиянии черных дыр, получающийся объект приобретает линейный импульс. Это называют гравитационно-волновой ракетой. В последние годы эффект начали учитывать в моделях иерархического скучивания галактик. Авторов интересует поведение уже сверхмассивных черных дыр, то, как они будут двигаться, аккрецировать и тп. с учетом того, что в результате слияний они получают достаточно высокие (сотни км в сек) скорости.
При скорости отдачи 100 км/с черная дыра осядет обратно в центр галактики через миллион лет (амплитуда "бултыханий" порядка 30 пк). Чем выше скорость - тем дольше будет "болтание" и больше амплитуда. Интересно, что величина полученной скорости мало влияет на набор массы черной дырой за время "бултыхания" в галактике, т.е. до оседания в центр (другое дело, что чем выше скорость - тем дольше "болтается"). К сожалению, обнаружить черные дыры, сильно смещенные от центров галактик непросто, т.к. чем больше смещение, тем короче активная фаза квазара.
Authors: Luca Baiotti, Bruno Giacomazzo, Luciano Rezzolla
Comments: 33 pages, 29 figures, submitted to Phys. Rev. D
Авторы представляют новый детальный расчет слияния двух нейтронных звезд. Предмет особого интереса авторов ? коллапс в черную дыру. В самом деле, обычно суммарная масса двух нейтронных звезд превосходит предел устойчивости относительно коллапса в черную дыру. Коллапс может происходить сразу после слияния или же с некоторой задержкой. Задержка связана с тем, что быстрое дифференциальное вращение может какое-то время удерживать объект от схлопывания.
Расчеты такого процесса крайне сложны, и даже представляемые результаты далеки от реальной ситуации. Авторы обсуждают, каковы могут быть, например, эффекты магнитных полей, не учитываемые в данных моделях. Кроме того, пока было использовано достаточно примитивное уравнение состояния вещества нейтронных звезд.
Authors: Christian Spiering
Comments: 16 pages, 20 figures. To be published in Astronomische Nachrichten
Astroparticle Physics (я буду использовать удачный перевод "космомикрофизика") завоевала статус самостоятельной дисциплины на стыке астрофизики, физики элементарных частиц (и ускорительной, и космических лучей) и космологии. Разумеется, часто невозможно (да и не нужно) точно определить является ли данная работа или проект "космомикрофизическим" или его лучше называть как-то иначе. Как бы то ни было ? Область характеризуется еще и тем, что в ней осуществляются очень дорогие проекты. Поэтому различные агентства строят долгосрочные планы. В статье дается очень интересный обзор того, что планирует в этой области Европа на ближайшие 10 лет.
Основные вопросы, которые ставят перед собой в данной программе ученые, таковы:
Первым стоит вопрос о природе темной материи. Здесь основными кандидатами являются нейтралино и аксионы. Что делается? Во-первых, идут лабораторные эксперименты по прямому детектированию частиц темной материи. В этой области европейцы, пожалуй, активнее других, и планируется продолжать поиски. Во-вторых, есть возможность увидеть частицы, являющиеся продуктами распада или аннигиляции частиц темной материи, например, гамма-кванты. У европейцев сейчас летает спутник PAMELA, от которого можно ожидать интересных результатов до запуска более мощного американского AMS. Однако, похоже, что у PAMELA есть какие-то трудности. В гамма-диапазоне у европейцев есть небольшой спутник AGILE. Планируемый в ближайшие месяцы к запуску американский GLAST будет намного эффективнее. Кроме того, можно искать продукты распада с помощью наземных гамма-телескопов, и тут с H.E.S.S. и MAGIC европейцы впереди планеты всей. Европейские планы по постройке большого морского нейтринного детектора потихоньку претворяются в жизнь, но очень потихоньку (об этом см. ниже). Наконец, в третьих, кое-что могут дать ускорительные эксперименты, и здесь, конечно, все надежды на LHC.
Что касается темной энергии, то тут Европа ограничивается стандартными астрономическими проектами в области наблюдательной космологии. Самым важным, наверное, в ближайшие 10 лет будет запуск спутника Planck (октябрь 2008 года). Кроме того, планируются обзоры в различных диапазонах спектра, но это чистая астрономия, которую космомикрофизика поддерживает морально.
Следующим пунктом стоит поиск распада протона. Для обнаружения надо строить подземные детекторы типа СуперКамиоканде, только на порядок больше. Пока идет проработка нескольких подходов (можно перечислить несколько названий проектов LENA, GLACIER, MEMPHYS, LAGUNA). Планируется, что к 2010 году будет выбран проект. Однако, все еще может сильно замедлиться. Стоимость установки будет порядка полумиллиарда евро. С такими проектами европейцы любят тянуть, поскольку нужно международная кооперация, а "у всех свои проблемы". Разумеется, такой детектор будет и прекрасным нейтринным детектором.
Теперь о "ловле нейтрино за бороду". Здесь интересны не только эксперименты типа морских детекторов с объемом порядка кубического километра. Во-первых, идут попытки померить массу нейтрино в лаборатории по измерению спектра электронов при бета-распаде (эксперимент KATRINA в Германии). Во-вторых, интересны исследования двойного безнейтринного бета-распада. Они должны дать ответ на вопрос о том, являются ли нейтрино майорановскими или дираковскими. Двойной безнейтринный бета-распад возможен только, если нейтрино майорановские.
Космические лучи. Европа активнейшим образом участвует в проекте Оже. Через несколько лет начнется монтаж северной части установки в США (южная полностью готова и работает). В северной части 45 процентов принадлежит Европе. Хотя чаще говорят о космических лучах сверхвысоких энергий, однако и на меньших энергиях есть еще немало нерешенных проблем. Для их разрешения строят отдельные детекторы. Один из детекторов стоит в Германии, и он будет продолжать свою работу.
Гамма-астрономия. Европейцы не собираются останавливаться на успехах, достигнутых группами H.E.S.S. и MAGIC. Разрабатывается проект гораздо более крупной сети наземных гамма-телескопов. По всей видимости будет две сети (северная и южная) с несколько разными параметрами, оптимизированными для изучения галактических источников (юг) и внегалактических (север).
Крайне заманчиво начать регистрировать нейтрино высоких энергий. Это возможно с помощью километровых детекторов в воде или льду. Пока в Антакртиде идет монтаж IceCube, европейцы тестируют в Средиземном море несколько прототипов водных детекторов. О едином европейском детекторе пока идут переговоры. Рано или поздно он наверняка будет построен, но какая-то конкретная информация о дизайне и тп. отсутствует. Кроме того, обсуждаются проекты косвенной регистрации нейтрино очень высоких энергий по радиоизлучению. В качестве рабочего тела тут может выступать, например, Луна.
Наконец, последняя тема связана с гравитационными волнами. В Европе работают VIRGO и GEO600. Апгрейд VIRGO позволит получить прибор, который действительно сможет иметь приемлемый темп регистрации слияний нейтронных звезд и черных дыр. Планируются более крупные установки (Einstein Telescope), но ясно, что даже при оптимистическом развитии событий их сооружение не попадает в ближайшие 10 лет. Что касается космических детекторов, то тут ESA сотрудничает с NASA в деле создания LISA. Пока обсуждается дата запуска 2018 год. Но, скорее всего, она будет несколько отодвинута. В 2010 году европейцы должны запустить прототип. Если с ним все пройдет удачно, то, наверное, появится реальных график реализации большого основного проекта.
Итого. Сейчас космомикрофизика находится на этапе, когда можно успеть снять сливки. Правда, требуется строить очень дорогие и технически сложные установки на земле, под землей, под водой и в космосе. В конце статьи автор приводит сводку проектов (и суммы), которые будут реализовываться в ближайшие 10 лет.
Похоже, что Европа не отстает от США, или отстает не сильно. Ну на ее второе место покушаться вроде бы и
некому.
Authors: Kristen Menou, Zoltan Haiman, Bence Kocsis
Comments: 8 pages, To appear in "Jean-Pierre Lasota, X-ray binaries, accretion disks and compact stars" New Astronomy Reviews, eds. M.A. Abramowicz and O. Straub (Elsevier, 2008)
Авторы рассматривают вопрос о том, что нового мы можем узнать благодаря детектору LISA с учетом того, что можно будет точно определить из какой галактики пришел сигнал (возможно, что это можно будет сказать даже до пика всплеска). Статья прежде всего интересна объяснением некоторых возможностей и их обсуждением. В частности, можно будет ограничивать альтернативные теории гравитации, т.к. можн буде определять задержку между приходом фотонного и гравитационного сигналов. Кроме того, наблюдения на LISA дадут независимую оценку расстояния до галактик по их гравитационно-волновому сигналу, что также очень интересно.
Authors: Bence Kocsis, Abraham Loeb
Comments: 4 pages, 2 figures, submitted to Physical Review Letters
Красивый результат. Авторы показывают, что при слиянии двух сверхмассивных черных дыр будут интересные наблюдательные эффекты в электро-магнитном излучении.
Сверхмассивные черные дыры сливаются при слияниях галактик. Поэтому вокруг дыр не пусто - много газа. Соответственно, будет аккреционный диск. Именно в диске и будет происходить диссипация энергии гравволн. Оказывается, что хотя волны будут очень слабо "раскачивать" диск, тем не менее этого достаточно, чтобы за недели (а то и годы) до полного слияния возникал наблюдаемый сигнал. Кроме того, конечно же должен быть сигнал и от самого слияния. Интересно, что он придет к нам на несколько часов (или даже дней) позже гравитационного сигнала (пока там диск переконвертирует гравитационные волны в электро-магнитные).
Так что авторы полагают, что во-первых, можно надеяться увидеть сливающиеся черные дыры и до LISA (хотя, разумеется, LISA тут ничем не заменишь: увидеть сигнал, косвенно связанный со слиянием, совсем не тоже самое, что увидеть сам гравитационно-волновой сигнал). Во-вторых, уже после запуска LISA стоит ловить электро-магнитные сигналы, соответствующие наблюдающимся гравитационно-волновым.
Authors: The Virgo collaboration
Comments: 26 pages, 10 figures
Приводится верхний предел на гравитационный сигнал от гамма-всплеска GRB 050915a.
Authors: Antoine Petiteau et al.
Comments: 22 pages, Physical Review D 77, 023002 (2008) 11
Тренироваться надо на кошках. Или на компьютерных моделях. Поэтому при разработке крупных научных проектов разные группы занимаются роазработкой компьютерных симуляторов установки. В данном случае речь идет о космическом гравитационно-волновом детекторе LISA.
Программа позволяет рассчитывать чувствительность детектора и сигналы от источников с известными свойствами. Программа находится в свободном доступе.
Authors: Alexander Dietz, for the LIGO Scientific Collaboration
Comments: 5 pages, 3 figures, contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 2007
Описано, как сейчас работают детекторы LIGO, а также, как в данных этих детекторов искали сигналы в моменты, определяемые наблюдениями гамма-всплесков. Ничего не найдено, но пределы уже весьма интересные. В основном речь идет о пределе на короткий всплеск GRB 070201, который проецируется на М31. Если местом всплеска и в самом деле была Туманность Андромеды, то LIGO абсолютно точно исключает, что вспышка была порожедна слиянием компактных объектов.
Authors: Zachariah B. Etienne et al.
Comments: 22 pages, 14 figures, submitted to Phys.Rev.D
Авторы представляют результаты численного моделирования слияния черной дыры и нейтронной звезды, полученные с помощью нового кода. Напомню, что такие события во-первых, совершенно точно являются мощнейшими источниками гравитационных волн (и, скорее всего, LIGO первыми увидит именно их), а во-вторых, какое-то время такие события обсуждались как источники коротких гамма-всплесков.
Результаты подтверждают, что гамма-всплеск сделать трудно, т.к. почти все вещество нейтронной звезды сразу проваливается в дыру, и лишь жалкие проценты идут на образование диска. Разумеется, авторы рассчитывают форму гравимпульса. Сравнение результатов расчетов с данными о будущих "отловленных" всплесках гравизлучения позволит дать важные ограничения на уравнение состояния нейтронных звезд.
Authors: LIGO Scientific Collaboration
Comments: 6 pages, 1 figre
Авторы приводят очередные верхние пределы, которые становятся все интереснее и интереснее. На этот раз речь идет о поиске по всему небу периодического сигнала по данным LIGO на частотах 50-1100 Гц. Для нейтронных звезд с экваториальной эллиптичностью выше одной миллионной это дает предел на расстояние 500 пк. Т.е., вплоть до этого расстояния нет быстровращающихся нейтронных звезд с таким сжатием.
Authors: Scott A. Hughes
Comments: 8 pages, 2 figures. For the Proceedings of the 7th Edoardo Amaldi Conference on Gravitational Waves (to be published by Classical and Quantum Gravity)
Очередной небольшой обзор по источникам гравитационных волн, которые сможет увидеть космический лазерный интерферометр LISA. Основных типов источников два: это двойные сверхмассивные черные дыры и обычные черные дыры в паре со свверхмассивными. Для первых можно ожидать темпа регистрации порядка десятков в год. Для вторых - сотни в год.
Обзор, на мой взгляд, ориентирован на физиков.
Authors: C. H. Lenzi et al.
Comments: 8 pages and 3 figures
Существуют разные типы детекторов гравитационных волн. Кроме известных лазерных интерферометров есть еще и сферические детекторы. Один из них - SCHENBERG - скоро начнет свою работу. Собственно, детектор уже построен и идут тесты.
В статье авторы рассказывают, какие астрофизические результаты могут быть получены с помощью нового прибора.
Authors: Frans Pretorius
Comments: 42 pages, 7 Figures. The "final version" of this Lecture Note will appear in the book: "Relativistic Objects in Compact Binaries: From Birth to Coalescence" Editor: Colpi et al. Pulisher: Springer Verlag, Canopus Publishing Limited
Большой обзор-лекция по слияниям черных дыр. Речь идет о теории, не о наблюдениях. Однако часть лекции будет вполне доступна неспециалистам.
Authors: LIGO Scientific Collaboration: B. Abbott, et al
Comments: 39 pages, 41 figures
Приведены данные обработки очередного (четвертого) отрезка научной работы гравитационно-волновой антенны LIGO. Это был достаточно короткий прогон - около месяца - в начале 2005 года. Но важно понимать, что обработка данных занимает очень большое время!
Авторы обсуждают поиски периодического сигнала. Ничего не найдено, но пределы (особенно для некоторых участков небесной сферы) становятся уже интересными.
Authors: Craig J. Hogan
Comments: 10 pages, LaTeX, to appear in "Frontiers of Astrophysics: A Celebration of NRAO's 50th Anniversary", eds. A.H.Bridle, J.J.Condon and G.C.Hunt
Автор рассматривает, какие возможности в исследовании вселенной откроются перед нами в ближайшие десятилетия за счет прямой регистрации гравитационных волн.
Authors: LIGO Scientific Collaboration
Comments: 23 pages, 10 figures, 14 tables; to be submitted to Phys. Rev. D
По данным трех этапов научной работы LIGO поставлены верхние пределы на гравитационное излучение от 39 гамма-всплесков.
Authors: L. P. Grishchuk
Comments: 43 pages including 9 figures, based on an invited lecture at the first J.A.Wheeler School on Astrophysical Relativity, June 2006
Лекция посвящена перспективам обнаружения эффектов воздействия реликтовых (космологических) гравитационных волн на фоновое микроволновое (т.е. реликтовое) излучение). По мнению автора уже следующее поколение экспериментов (Planck и др.) сможет дать положительный результат.
Authors: The LIGO Scientific Collaboration
Comments: 11 pages, 9 figures, 2 tables
Представлены результаты анализа наблюдений LIGO по гравитационно-волновому фону. Существенно, что результаты получены без предположения об изотропии фонового излучения. Т.о., удалось построить карты верхних пределов, а не просто дать одно число, характеризующее предел "по всему небу".
Authors: Eric Gourgoulhon
Comments: Lectures given at the General Relativity Trimester held in the Institut Henri Poincare (Paris, Sept.-Dec. 2006) and at the VII Mexican School on Gravitation and Mathematical Physics (Playa del Carmen, Mexico, 26. Nov. - 2 Dec. 2006), 220 pages, 25 figures.
Фактически, это книга, посвященная очень популярной сейчас тематике - численному моделированию эффектов ОТО. Никакого "общего" интереса работа не представляет, но, по всей видимости, является полезнейшим руководством для тех, кто в самом деле этим занимается.
Authors: John G. Baker et al.
Comments: 5 pages, 3 figures
Года три назад возродился интерес к т.н. "гравитационно-волновой ракете". Идея тут в том, что при слиянии черных дыр образующаяся дыра получает импульс (или, как говорят, "кик" - удар, толчок, kick). Связано это с несимметричным излучением гравитационных волн.
В самом начале своей статьи Бейкер и др. отмечают успехи в численном моделировании слияний черных дыр. Тем не менее, для "широкой общественности" было бы чрезвычайно удобно, если бы результаты расчетов были хорошо зааппроксимированны какой-нибудь формулой (пусть и сложной), ибо иначе независимым группам (у которых нет своих кодов) невозможно включать учета эффекта гравитационно-волновой ракеты в свои модели. А эффект важен для многих областей астрофизики. В первую очередь он существенен при расчетах роста галактик в модели иерархического скучивания.
В своей статье Бейкер и др. пытаются дать такую формулу, основываясь на своих расчетах, а также на результатах опубликованных расчетов других групп. Формула дана, и по словам аворов она аппроксимирует результаты с точность лучше 10 процентов.
Authors: Manuela Campanelli, Carlos O. Lousto, Yosef Zlochower, David Merritt
Comments: 4 pages, 4 figs, revtex4
Напомню, что при слиянии двух черных дыр образующаяся дыра получает дополнительную скорость из-за несимметричного излучения гравитационных волн на последних стадиях слияния. Типичные скорости получаются порядка 100 км/с. Скорость зависит от отношения масс черных дыр, от ориентации их осей вращения и от скорости вращения. Провести точный расчет нелегко из-за трудности задачи, поэтому многие детали распределения скоростей остаются неизвестными.
Авторы данной статьи исследовали, какой может быть максимальная скорость, приобретенная черной дырой за счет эффекта гравитационно-волновой ракеты. Согласно их расчетам максимальная скорость может достигать 4000 км/с!
Authors: The LIGO Scientific Collaboration: B. Abbott, et al, M. Kramer, A. G. Lyne
Comments: 21 pages
LIGO продолжает сбор данных. Команда регулярно выдает верхние пределы на гравитационно-волновое излучение от радиопульсаров (обо всем этом, кстати, можно почитать во втором номере "Вокруг Света"). Растет число исследованных пульсаров, и пределы становятся все лучше и лучше. Самый жесткий на сегодняшний день дает параметр экваториальной эллиптичности уже на уровне 10-6 (об определении этого параметра см., например, gr-qc/0508096, стр. 2 уравнение 2). Это уже на уровне ожидаемого. Т.е., по всей видимости, недалек тот день, когда появится и сигнал. LIGO или VIRGO первым его поймают - увидим.
Authors: Masaru Shibata, Koji Uryu
Comments: 14 pages. To appear in a special issue of Classical and Quantum Gravity: New Frontiers in Numerical Relativity
Представлены результаты новых численных расчетов слияний систем, состоящих из нейтронных звезд и черных дыр. Важно, что авторы находят новые аргументы в пользу того, что такие системы могут порождать короткие гамма-всплески.
Authors: Scott A. Hughes
Comments: 8 pages, 2 figures, for the Proceedings of the Sixth International LISA Symposium
LISA - это космический проект, предназначенный для детектирования гравитационных волн. Изюминка состоит в том, что инструмент сможет работать на достаточно низких чатсотах. Одними из основных источников в этом диапазоне являются массивные двойные с черными дырами. В статье дается обзор основных задач, стоящих перед LISA, а также описываются ожидаемые результаты.
Authors: LIGO Scientific Collaboration
Comments: 46 pages, 16 figures
Гравитационно-волновой интерферометр LIGO уже пару лет работает в режиме научных наблюдений. Создатели установки постоянно повышают чувствительность, однако пока она все равно недостаточна для обнаружения слияния компактных объектов. Поэтому из данных извлекают ту информацию, которую можно извлечь. В частности, речь идет о верхних пределах и уровне фона.
Authors: R N Manchester
Comments: 10 pages, in press ChJAA
Конечно, хочется зарегистрировать гравитационные волны как можно непосредственнее. Для этого и строят лазерные интерферометры и твердотельные установки. Однако наблюдения радиопульсаров позволяют получать данные о гравитационных волнах пусть и не столь непосредственным, зато более дешевым путем. Все хорошо знают о том, что двойные радиопульсары испытывают изменения орбит за счет излучения гравитационных волн. Есть и другие эффекты, связанные с наблюдением этих объектов, позволяющие получать информацию о гравитационных волнах.
Важным достоинством миллисекундных радиопульсаров является поразительная устойчивость их периодов. Она сравнима с лучшими земными атомными часами. По сути, наблюдения нескольких таких пульсаров могут дать стандарт частоты превосходящий атомные! Эту особенность можно использовать для косвенного наблюдения гарвитационных волн.
Гравитационные волны влияют на наблюдаемые периоды пульсаров. Именно на наблюдаемые, т.к. речь идет об эффекте, связанным с прохождением волны через нас. Из-за прохождения волны период пульсара будет казаться нам то короче, то длиннее. Идея такого обнаружения гравитационных волн была впервые высказана М.В. Сажиным в 1978 г. Исследуя один объект можно дать верхний предел на фон гравитационных волн (вокруг нас) в определенном диапазоне частот. Причем, пульсарные данные чувствительны к очень большим периодам - порядка времени наблюдения, т.е. несколько лет (соответственно, частоты гравволн исчисляются в данном случае наногерцами). Наблюдения за несколькими пульсарами позволяет (точнее может позволить) зарегистрировать этот гравитационно-волновой фон.
Собственно, "пульсарная временная решетка" (Pulsar Timing Array) это не новый прибор. Сами пульсары и образуют "решетку" или "сеть". Наблюдения же планируется проводить на уже хорошо известном 64-метровом радиотелескопе. Хотя, электронная начинка и программное обеспечение должны быть доработаны, чтобы выйти на необходимую чувствительность. Такая необходимость была продемонстрирована в течение первого года наблюдений.
О проекте также можно почитать здесь.
Authors: C. Rodriguez et al.
Comments: 34 pages, 7 figures, Accepted to The Astrophysical Journal
Открыта система из двух сверхмассивных черных дыр. Это не первая такая система, и я уже рассказывал о них ранее, даже не раз. Однако новая система выделяется своей компактностью. Расстояние между дырами всего 7.3 парсека!
К сожалению, ждать слияния пришлось бы достаточно долго. Если дыры будут терять угловой момент только за счет гравитационного излучения, то до слияния целых 1018 лет. В центрах галактик можно придумать несколько способов, как сократить это время (например, система может сближаться из-за динамического трения, или же система будет выкидывать звезды, уменьшая тем самым орбитальный момент).
Важно, что эта двойная может быть первой ласточкой среди двойных черных дыр с расстоянием между компонентами порядка нескольких парсек и меньше. Такие системы важны для планирующегося космического интерферометра LISA.
Authors: L. Villain
Comments: 19 pages, Proceeding of Cargese School "Astrophysical fluid dynamics" (May 2005) organized by B. Dubrulle and M. Rieutord in honour of J.-P. Zahn and S. Bonazzola
Подробный, понятный и интересный обзор, посвященный неустойчивостям в нейтронных звездах и родственных им объектах. Такие неустойчивости будут приводить к генерации гравитационных волн. Отсюда термин "гравитационно-волновая астросейсмология". Правда, регистрация таких колебаний - дело будущего.
Authors: Luigi Stella et al.
Comments: 5 pages, Accepted for publication on ApJ Letters
Я уже писал недавно о работе, связанной с гравитационным излучением магнитаров. Вот еще одна. Здесь речь идет не о фоне, а об излучении от скопления в Деве. В самом деле, там темп рождения магнитаров должен быть достаточно высок, а авторы показывают, что при начальном поле порядка 1016.5 Гс гравитационно-волновй сигнал будет достаточно силен, чтобы источник удалось увидеть модернизированной версией LIGO. Наличие сигнала связано с тем, что мощное магнитное поле деформирует нейтронную звезду, и она становится источником гравитационных волн (звезда будет несимметрична относительно оси вращения из-за магнитной деформации, соотвественно возникнет прецессия). Оценки показывают, что темп рождения магнитаров в скоплении в Деве должен быть порядка штуки в год. Т.о., если предположение о быстром начальном вращении магнитаров и о том, что при рождении их поле достигает 1016.5 Гс, верно, то модернизированная установка LIGO будет видеть один всплеск в год, что немало. Отмечу, однако, что избытка гамма всплесков магнитаров от этого скоплени галактик мы не видим.
Authors: Tania Regimbau, Jos Antonio de Freitas Pacheco
Comments: accepted for publication in A&A 17 pages, 7 figures
Ранее эти авторы уже проводили расчеты гравитационно-волнового фона, связанного с одиночными нейтронными звездами. Дело в том, что поскольку нейтронные звезды слегка несимметричны, они излучают гравитационные волны. Излучают слабо, но звезд таких во вселенной много. Поэтому суммарный сигнал получается заметным, и он может быть задетектирован как фон. В этой работе авторы уделяют особое внимание магнитарам. Причина в том, что сильные магнитные поля могут приводить к дополнительной деформации нейтронной звезды, а такая звезда будет сильнее излучать. В прошлых работах этот факт игнорировался, а здесь учтен.
Авторы полагают, что фон от магнитаров может в будущем мешать регистрации космологических гравитационных волн.
От себя добавим, что фон может приходить существенно неравномерно от разных участков неба, т.к. магнитары должны быть сильно сконцентрированы в галактиках с высоким темпом звездообразования. Может быть этот факт как-то поможет вычесть магнитарный фон.
Authors: Louis J. Rubbo et al.
Comments: See related hands-on activity at physics/0503198. Accepted to The Physics Teacher
Популярный обзор, посвященный гравитационным волнам, их детекторам и источникам.
Authors: T. Regimbau et al.
Comments: talk given at the GWDAW9 (Annecy, 2004) to be published in CQG
Приводятся очередные оценки темпа слияния двойных нейтронных звезд. Расчитаны частоты наблюдений таких событий наземными детекторами (LIGO, VIRGO). В своих начальных конфигурациях, согласно авторам, интерферометры не смогут увидеть слияния (темп составляет примерно раз в 125-150 лет), зато после "доводки" детекторы смогут регистрировать по нескольку слияний в год.
Заметим, что эти оценки менее оптимистичны, чем, скажем, расчеты Липунова и др.
Authors: Naoki Seto
Comments: 6 pages, 1 figure, to appear in PRD
Автор показывает, что регистрация гравитационных волн от быстровращающихся нейтронных звезд может позволить получить независимую оценку расстояния до них с точностью порядка 10 процентов.
Authors: Matthew Pitkin, for the LIGO Scientific Collaboration
Comments: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figures
А вот здесь есть только верхние пределы. Команда LIGO представляет новые ограничения на поток гравитационных волн от 28 известных пульсаров.
Authors: Fredrick A. Jenet, George B. Hobbs, K.J. Lee, Richard N. Manchester
Comments: 8 pages, Accepted by ApJ Letters
Как известно, радиопульсары можно использовать в качестве независимых стандартов точного времени. Кроме того, их можно использовать и как независимые детекторы гравитационных волн! Идея эта не новая (ее обсуждали и в СССР, например Михаил Васильевич Сажин, на него авторы аккуратно ссылаются). Тем не менее, сейчас перспектива регистрации фона гравитационных волн выглядит гораздо реалистичнее чем 30 лет назад.
Authors: L. P. Grishchuk
Comments: 31 pages including 8 figures; expanded version of a talk at the international conference eldovich-90', Moscow, December 2004; http://hea.iki.rssi.ru/Z-90
Статья представляет собой расширенную версию доклада, прочитанного Леонидом Петровичем в декабре прошлого года в Москве. Кроме собственно обзора по гравитационным волнам в космологии в работе есть и мемориальная часть, посвященная Я.Б. Зельдовичу.
Authors: A. Melatos, D. J. B. Payne
Comments: 19 pages, 4 figures, accepted for publication in The Astrophysical Journal
В качестве источника гравитационных волн рассмотрена нейтронная звезда "в интересном положении".
При мощной аккреции на нейтронные звезды вещество существенно изменяет структуру магнитного поля. Поле "зарывается" за счет выпавшего вещества. Формируется некоторый "пояс" на магнитном экваторе (вещество выпадает в основном на магнитные полюса). В свою очередь магнитное поле препятствует проникновению части вещества в область магнитного экватора. Т.о. образуется куча (гора) вещества. Т.к. магнитные полюса вовсе не обязаны совпадать с "географическими" полюсами (т.е. магнитная ось не совпадает с осью вращения), то звезда приобретает квадрупольный момент, а, следовательно, будет излучать гравитационные волны.
С одной стороны, авторы показывают, что их более совершенаня оценка дает амплитуду гравитационных волн выше, чем предсказывалось ранее. С другой стороны, величина все равно слишком мала, чтобы можно было рассчитывать на регистрацию современными версиями LIGO и VIRGO.
Authors: C. Palomba
Comments: 31 pages, 17 figures; accepted in MNRAS
Еще один пример интересного популяционного синтеза одиночных нейтронных звезд.
Если нейтронные звезды обладают эллиптичностью, то они будут источниками гравитационных волн. Более того, если существует подкласс нейтронных звезд с маленьким магнитным полем и заметной асимметрией формы, то их эволюция будет определяться излучением гравволн. Именно таким объектам и посвящена статья.
Подчеркнем, существование такого подкласса компактных объектов является гипотезой. По всей видимости ввод в строй детектора гравитационных волн VIRGO позволит или открыть их, или наложить существенные ограничения на их количество или параметры.
Authors: The LIGO Scientific Collaboration
Comments: 18 pages, 9 figures and 3 tables
Гамма-всплеск, наблюдавшийся 29 марта 2003 года (GRB030329), был очень ярким. Поэтому в принципе можно было надеяться на регистрацию гравитационно-волнового сигнала. Команда LIGO провела анализ отклика детектора в момент прихода гамма-всплеска. Разумеется, результат нулевой (иначе об этом писали бы все новостные ленты мира). Однако важно, что качество таких верхних пределов растет. Значит, может быть доживем и до реальной регистрации сигнала.
Authors: Eanna E. Flanagan, Scott A. Hughes
Comments: 47 pages, 3 figures. For special issue of New Journal of Physics, "Spacetime 100 Years Later", edited by Richard Price and Jorge Pullin
Развернутое введение в теорию гравитационных волн.
2005 год - год физики. Связано это в первую очередь со столетием специальной теории относительности. В связи с этим ожидается много конференций и сборников. Так что у всех желающих будет много возможностей почитать про гравитацию, пространство-время & Co.
Authors: A.Buonanno et al.
Comments: 4 pages, 5 figures
Интересно, как некоторые результаты могут не меняться десятилетиями. Одна из первых известных нам работ, в которой был рассчитан гравитационно-волновой фон от сверхновых, была сделана в 1987 году. Сверхновые во всей Вселенной вспыхивают несколько раз в секунду (от одного до нескольких десятков раз). Каждая сверхновая дает импульс гравитационных волн. Разброс оценок его мощности гораздо больше. Соответственно, на частотах ниже 1 Гц эти импульсы гарантированно сливаются в непрерывный фон, который превышает остальные астрофизические и космологические гравитационно-волновые шумы до частоты 0.01 Гц. Так было двадцать лет назад. Сейчас обе неопределенности уменьшились, но все равно "оценки имеют неопределенность в несколько порядков величины" и по прежнему "можно надеяться на их регистрацию наземными интерферометрами".
Authors: D.Fargion
Comments: 6 pages
Название статьи отчасти провокационно. Автор рассматривает вопрос о том, могут ли гравитационно-волновые детекторы быть использованы для срочного оповещения о крупных землетрясениях и цунами. Кроме того рассмотрено изменение параметров вращения Земли после крупных катастроф.
Authors: Thibault Damour and Alexander Vilenkin
Comments: 16 pages, 6 figures
Космические струны (не путать с микроскопическими суперструнами) являются объектами очень малой толщины, космической (или, скорее, космологической протяженности) и существенной массы. Космические струны движутся или колеблются (замкнутые струны) с линейными скоростями, близкими к световым. При этом они излучают гравитационные волны, высокочастотная часть спектра которых будет попадать в диапазон чувствительности наземных (LIGO/VIRGO) и космических (LISA) детекторов. (Гладкие участки струн излучают низкочастотные волны, высокочастотное излучение дают каспы - перегибы и складки замкнутых струн.) Кроме этого фон гравитационных волн может быть обнаружен по долговременным наблюдениям тайминга пульсаров.
Другим источником низкочастотных гравитационных волн могут быть молодые и плотные скопления звезд. Этому посвящен миниобзор Симона Портегис Зварта astro-ph/0410531.
Authors: Florian Dubath et al.
Comments: 4 pages, 2 figs
В заметке идет речь о новом типе источников гравитационных волн, которые время от времени испускают достаточно короткие импульсы гравитационных волн. Подобными свойствами могут обладать источники мягких повторных гамма-всплесков (мягкие гамма-репиторы =SGR), которые, как сегодня предполагают, являются магнетарами - нейтронными звездами со сверхсильными полями. Мощность гравитационных вспышек может различаться также сильно, как и мощность гамма-вспышек этих объектов: распределение мощности вспышек имеет степенной вид dN ~ E-1.6dE, а распределение моментов вспышек заметно отличается от случайного (некоррелированного). Кроме этого в статье рассмотрены вопросы регистрации подобных вспышек на современных гравитационных детекторах.
Authors: The LIGO Scientific Collaboration: B. Abbott, et al, and M. Kramer and A.G. Lyne
Comments: 6 pages, 2 figures
Короткая, но важная заметка.
LIGO работает (все еще не постоянно и не на планировавшейся чувствительности). Пока ставятся верхние пределы, но даже это большой шаг вперед.
Для коротких сетов измерений, которые пока проводятся на интерферометре, наилучщими объектами исследования оказываются известные радиопульсары, для которых с очень высокой точностью известно как положение на небе, так и скорость их вращения (т.е. частота ожидаемого сингала).
Для 26 одиночных радиопульсаров получены хорошие верхние пределы на поток гравитационных волн. Почти для всех они равны нескольким единицам на 10-24 (амплитуда гравитационной волны измеряется безразмерных единицах - относительном изменении расстояния между свободными телами при ее прохождении). Для четырех ближайших пульсаров эти пределы уже существенно ограничивают фантазии теоретиков относительно возможной несферичности этих объектов - она не может превышать ~5x10-6.
Authors: Leor Barack and Curt Cutler
Comments: 26 pages, 23 figures
Центральные черные дыры галактики захватывают звезды и компактные объекты (в основном белые карлики). Гравитационное излучение этих процессов попадает в диапазон чувствительности космического лазерного интерферометра LISA (миллигерцы). Амплитуда указанных сигналов достаточно велика, чтобы они были зарегистрированы. Однако, основная часть указанных сигналов не будет разрешена на индивидуальные захваты, т.е. останется шумом. А любой шум вреден для наблюдений. Можно ли будет зарегистрировать что-то еще на фоне указанного шума? Ответ да.
Authors: Scott A. Hughes, Marc Favata, Daniel E. Holz
Comments: 6 pages, 3 figure
В статье (еще раз) описывается эффект "гравитационной ракеты": на каждом орбитальном обороте на круговой орбите двойная система испускает гравитационные волне несимметрично из-за того, что компоненты системы постепенно сближаются. Этот эффект очень слаб, кроме того кик, приобретенный на одном обороте, компенсируется в начале следующего. Данная картина нарушается на последнем обороте. В результате, двойные черные дыры после слияния приобретают вполне заметную пространственную скорость, причем ее величина не зависит от массы системы и может достигать десятков или даже сотен километров в секунду (но никогда не может превысить 500 км/с).
Authors: L.P.Grishchuk et al.
Comments: 29 pages, 8 figures
Каждое плечо лазерного гравитационного детектора состоит из двух зеркал разнесенных на расстояние порядка километра. Колебания и перемещения земной коры на таком расстоянии намного превосходят эффект, вызываемый гравитационными волнами. К счастью колебания земной коры происходят на более низких частотах и системе шумоподавления, встроенной в подвеску зеркал, удается отстроиться от геофизических колебаний. Однако после этого в системе шумоподавления оказывается информация о колебаниях поверхности. Таким образом, гравитационная антенна может использоваться не только по своему прямому назначению, но и как высокоточный и высокочувствительный геофизический прибор.
Authors: T.Damour et al.
Comments: 49 pages, 6 figures
Сливающиеся нейтронные звезды (или черные дыры) наиболее понятный и ожидаемый источник гравитационных волн в диапазоне наземных (типа LIGO) и космических (LISA) гравитационных антенн. Обычно предполагают, что эксцентриситет орбиты у таких систем равен нулю. Это вполне обоснованно - по мере сближения компонент системы эксцентриситет ее орбиты быстро убывает. Для сливающихся звезд на строго круговых орбитах рассчитаны многочисленные шаблоны деформаций антенн, вызываемых гравитационным сигналом.
Однако, если эксцентриситет орбиты системы оказывается недостаточно мал, ситуация резко ухудшается. Для описания подобной системы требуются еще два дополнительных параметра, а число шаблонов, с которыми надо сравнивать принимаемый сигнал, возрастает на порядки.
В данной работе получено аналитическое описание формы волнового сигнала от сливающихся двойных звезд с некруговой орбитой. К сожалению качество приведенных в препринте рисунков не позволяет их хорошо рассмотреть.
Authors: Gilles Esposito-Farese
Comments: 20 pages, LaTeX 2e, 7 postscript figures, contribution to 10th Marce Grossmann Meeting, 20-26 July 2003, Rio de Janeiro, Brazil
Дается обзор ограничений, накладываемых наблюдениями двойных радиопульсаров, на различные теории гравитации. Интересно, что сейчас самое сильное ограничение дает не тейлоровский пульсар, а пульсар в паре с белым карликом. Однако, ясно, что в самом недалеком будущем самое сильное ограничение будет давать система радиопульсар+радиопульсар, ставшая супероткрытием прошлого года.
Authors: Kei Kotake et al.
Comments: 25 pages, 6 figures, accepted for publication in PRD
Взрывы сверхновых являются одними из возможных источников гравитационных волн. Правда, при этих взрывах не такая уж большая доля энергии уходит в виде граввсплека, но тем не менее. Современные детекторы могли бы "почувствовать" сверхновую в нашей Галактике. Однако, читатель может помнить, что для гравдетекторов очень важно заранее знать форму сигнала (хотя бы приблизительно), тогда его гораздо легче выделить на фоне шумов.
Расчет реалистичных форм сигналов очень сложен, т.к. сложны процессы, протекающие при взрыве. В этой работе авторы пытаются в сложной численной модели учесть эффекты магнитных полей и уравнения состояния вещества взрывающегося ядра.
Authors: M. Arnaud-Varvella, M.-C. Angonin, Ph. Tourrenc
Comments: 34 pages, Accepted for publication in General Relativity and Gravitation
Очень важно наконец зарегистрировать гравитационно-волновые сигналы! Однако дело это очень сложное. Поэтому люди обсуждают разные (самые экзотичные) идеи о том, как число наблюдаемых сигналов можно увеличить. Забавная мысль состоит в возможности увеличения числа детектируемых всплесков за счет линзирования. В этой статье авторы тщательно исследовали этот вопрос в применении к наземным и космическим интерферометрам. К сожалению, выводы пессимистические: никакого серьезного увеличения числа всплесков не получается. Если вас интересуют технические детали и всякие подробности - пожалуйста, изучайте статью.