Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

На первую страницу Космические рубежи теории относительности

<< 8. Черные дыры | Оглавление | 10. Черные дыры с электрическим зарядом >>

9. Геометрия решения Шварцшильда

В 1916 г., всего лишь через несколько месяцев после того, как Эйнштейн опубликовал свои уравнения гравитационного поля в общей теории относительности, немецкий астроном Карл Шварцшильд нашел решение этих уравнений, описывающее простейшую черную дыру. Шварцшильдовская черная дыра "простая" в том смысле, что она сферически симметрична (т. е. у нее нет "предпочтительного" направления, скажем оси вращения) и характеризуется лишь массой. Поэтому здесь не учитываются те усложнения, которые вносят вращение, электрический заряд и магнитное поле.

Начиная с 1924 г. физики и математики начали осознавать, что в шварцшильдовском решении уравнений гравитационного поля есть что-то необычное. В частности, у этого решения имеется математическая особенность на горизонте событий. Сэр Артур Эддингтон был первым, кто подобрал новую систему координат, в которой этот эффект отсутствует. В 1933 г. Жорж Лемэтр продвинул эти исследования дальше. Однако лишь Джон Лайтон Синг раскрыл (в 1950 г.) истинную сущность геометрии шварцшильдовской черной дыры, открыв тем самым пути для последующих важных работ М. Д. Крускала и Г. Секереша в 1960 г.

Чтобы разобраться в деталях, выберем прежде всего трех ребят - Борю, Васю и Машу - и представим себе, что они парят в космосе (рис. 9.1). Всегда можно взять в космосе произвольную точку и определить положения всех троих, измеряя расстояния от них до этой точки. Например, Боря находится на расстоянии 1 км от этой произвольной начальной точки отсчета, Вася - в 2 км, а Маша - в 4 км. Характеристику положения в таком случае обычно обозначают буквой r и называют радиальным расстоянием. Таким путем можно выразить расстояние до любого объекта во Вселенной.

Рис. 9.1. Расположение в пространстве. Расположение каких-либо объектов в пространстве может быть охарактеризовано расстоянием по радиусу от произвольной начальной точки отсчета до каждого из объектов.

Заметим теперь, что наши три приятеля неподвижны в пространстве, но "перемещаются" во времени, ибо становятся все старше и старше. Эту особенность можно изобразить на пространственно-временной диаграмме (рис. 9.2). Расстояние от произвольной начальной точки отсчета ("начала") до другой точки в пространстве откладывается здесь вдоль горизонтальной оси, а время - вдоль вертикали. Кроме того, как и в частной теории относительности, удобно взять на координатных осях этого графика такие масштабы, чтобы лучи света описывались прямой с наклоном 45њ. На такой диаграмме пространства-времени мировые линии всех троих ребят идут вертикально вверх. Они все время остаются на одних и тех же расстояниях от точки начала (r = 0), но постепенно становятся все старше и старше.

Рис. 9.2. Диаграмма пространства-времени. Можно построить такую диаграмму пространства-времени, на которой по пространственной оси откладывается радиальное расстояние от произвольной точки начала отсчета. Масштабы, отложенные по осям, таковы, что световые лучи распространяются по прямым с наклоном 45њ.

Важно осознать, что левее точки r = 0 на рис. 9.2 вообще ничего нет. Эта область соответствует чему-то, что можно назвать "отрицательным пространством". Так как невозможно находиться "на расстоянии минус 3 м" от какой-либо точки (начала отсчета), то расстояния от начала всегда выражаются положительными числами.

Перейдем теперь к шварцшильдовской черной дыре. Как уже говорилось в предыдущей главе, такая дыра состоит из сингулярности, окруженной горизонтом событий на расстоянии 1 шварцшильдовского радиуса. Изображение такой черной дыры в пространстве дано на рис. 9.3 слева. При изображении черной дыры на пространственно-временной диаграмме произвольную точку начала отсчета координат для удобства совместим с сингулярностью. Тогда расстояния измеряются непосредственно от сингулярности по радиусу. Получившаяся диаграмма пространства-времени изображена на рис. 9.3 справа. Подобно тому как наши приятели Боря, Вася и Маша изображаются на рис. 9.2 вертикальными мировыми линиями, мировая линия горизонта событий идет вертикально вверх в точности на 1 шварцшильдовский радиус правее мировой линии сингулярности, которая на рис. 9.3 изображена пилообразной линией.

Рис. 9.3. Черная дыра в пространстве и в пространстве-времени. Шварцшильдовская черная дыра изображена слева в пространстве. Она состоит из сингулярности, окруженной горизонтом событий. Справа дана диаграмма пространства-времени для той же дыры. Расстояние измеряется радиально от сингулярности.

Хотя в рис. 9.3, изображающем шварцшильдовскую черную дыру в пространстве-времени, как будто нет ничего загадочного, к началу 1950-х годов физики начали понимать, что этой диаграммой суть дела не исчерпывается. У черной дыры имеются разные области пространства-времени: первая между сингулярностью и горизонтом событий и вторая за пределами горизонта событий. Мы не смогли полностью выразить в правой части рис. 9.3, как именно связаны между собой эти области.

Рис. 9.4. Увлекательное путешествие. Астроном вылетает из сингулярности черной дыры с массой 10 солнечных масс, поднимается над горизонтом событий и достигает максимальной высоты 1 млн. км. На верхней точке траектории его часы (измеряющие собственное время) синхронизуются с часами удаленных ученых (измеряющих координатное время). Затем астроном снова радиально падает на черную дыру, опускается под горизонт событий и попадает в сингулярность.
Чтобы разобраться во взаимосвязи между областями пространства-времени внутри и вне горизонта событий, представим себе черную дыру с массой в 10 солнечных масс. Пусть из сингулярности вылетает астроном, пролетает через горизонт событий наружу, поднимается на максимальную высоту в 1 миллион километров над черной дырой, а затем падает обратно, сквозь горизонт событий, и снова падает в сингулярность. Полет астронома изображен на рис. 9.4.

Внимательному читателю это может показаться невозможным - ведь из сингулярности выскочить вообще нельзя! Ограничимся тем, что сошлемся на чисто математическую возможность такого путешествия. Как станет видно из дальнейшего, полное решение Шварцшильда содержит как черную, так и белую дыру. Поэтому на протяжении нескольких следующих разделов от читателя потребуется терпение и внимание. Здесь и в последующих главах мы будем иллюстрировать изложение с помощью путешествий астрономов или космонавтов к черным дырам. Для удобства будем говорить о космонавте просто "он".

Астроном-путешественник имеет с собой часы, чтобы измерять свое собственное время. У домоседов-ученых, следящих за его полетом с расстояния в 1 миллион километров от черной дыры, тоже имеются часы. Пространство там плоское, и часы измеряют координатное время. При достижении высшей точки траектории (на расстоянии миллиона километров от черной дыры) все часы ставятся на один и тот же момент (синхронизуются) и теперь показывают 12 ч дня. Тогда можно вычислить, в какой момент (как по собственному времени путешественника, так и по координатному времени) астроном попадет в каждый интересующий нас пункт своей траектории.

Напомним, что часы астронома измеряют его собственное время. Поэтому по ним нельзя заметить "замедления хода времени", обусловленного эффектом гравитационного красного смещения. При заданных значениях массы черной дыры и высоты над ней высшей точки пути расчеты приводят к следующему результату:

В собственном времени астронома

  1. Астроном вылетает из сингулярности в 11 ч 40 мин утра (по своим часам).
  2. Через 1/10 000 с после 11 ч 40 мин он перелетает через горизонт событий во внешний мир.
  3. В 12 ч дня он достигает максимальной высоты в 1 миллион километров над черной дырой.
  4. За одну 1/10 000 с до 12 ч 20 мин дня он пересекает горизонт событий, двигаясь внутрь.
  5. Астроном возвращается в сингулярность в 12 ч 20 мин дня.

Иными словами, на движение от сингулярности до горизонта событий и обратно ему нужно одно и то же время - 1/10 000 с, тогда как на перемещение от горизонта событий до высшей точки своей траектории и наоборот он затрачивает всякий раз 20 мин (за 20 мин он проходит 1 миллион километров). Следует иметь в виду, что собственное время при полете течет стандартным образом.

Проводящиељљ издалекаљљ наблюденияљљ ученыељљ измеряютљљ по своим часам координатное время; их вычисления дают следующие результаты:

В координатном времени

  1. 1. Астрономљ вылетаетљ изљсингулярностиљ вљљ 11 чљ40 минљ утра.
  2. 2. Он выходит через горизонт событий во внешний мир миллиарды лет назад (точнее, в году под номеромљљ$-\infty$).
  3. 3. В 12 ч дня он достигает максимальной высоты в 1 миллион километров над черной дырой.
  4. 4. Он пересекает горизонт событий, двигаясь внутрь, через миллиарды лет в будущем (точнее, в году под номеромљљ $+\infty$).
  5. 5. Астроном возвращается в сингулярность в 12 ч 20 мин дня.

Конечно, все согласны в том, что астроном-путешественник достигает максимальной высоты полета в 12 ч дня, т.е. в тот момент, в который синхронизуются все часы. Все также будут согласны и в том, когда астроном вылетает из сингулярности и когда он возвращается в нее. Но в остальном шварцшильдовская геометрия явно ненормальна. Вылетев из сингулярности, астроном перемещается в координатном времени вспять во времени до года $-\infty$. Затем он снова мчится вперед во времени, достигает максимальной высоты полета в полдень, а опускается под горизонт событий в год $+\infty$. После этого он снова перемещается вспять во времени и попадает в сингулярность в 12 ч 20 мин дня. На диаграмме пространства-времени его мировая линия имеет вид, показанный на рис. 9.5.

Рис. 9.5. Путешествие в координатном времени. На этой диаграмме пространства-времени изображена траектория движения астронома из черной дыры и обратно. Он выходит через горизонт событий в отдаленном прошлом и снова пересекает горизонт событий (на этот раз внутрь) в далеком будущем.

 

Кое-что из этих странных выводов можно понять интуитивно. Вспомним, что с точки зрения удаленного наблюдателя (часы которого измеряют координатное время) на горизонте событий время останавливается. Вспомним также, что камень или любое другое тело, падающее на горизонт событий, никогда не дойдут до точки с высотой шварцшильдовского радиуса в представлении далекого наблюдателя. Поэтому падающий в черную дыру астроном не может пересечь горизонта событий вплоть до года $+\infty$, т. е. в бесконечно отдаленном будущем. Так как все путешествие симметрично относительно момента 12 ч дня (т.е. взлет и падение занимают одно и то же время), то далекие ученые должны наблюдать, что астроном поднимался, двигаясь к ним, в течение миллиардов лет. Он должен перейти наружу горизонт событий в год $-\infty$.

Еще непонятнее тот факт, что удаленные наблюдатели видят двух движущихся астрономов. Так, например, в 3 ч дня они видят одного астронома, падающего на горизонт событий (движущегося вперед во времени). Однако, согласно их же расчетам, должен существовать и другой астроном внутри горизонта событий, падающий на сингулярность (и движущийся вспять во времени).

Конечно, это бессмыслица. Точнее, такое странное поведение координатного времени означает, что изображенная на рис. 9.3 картина шварцшильдовской черной дыры попросту не может быть верна. Приходится поискать другие - причем их может быть множество - истинные диаграммы пространства-времени для черной дыры. В той простой диаграмме, которая показана на рис. 9.5, одни и те же области пространства-времени оказываются перекрытыми дважды, поэтому и наблюдаются сразу два астронома в то время, как на самом деле существует только один. Значит, нужно развернуть или преобразовать эту простую картинку таким образом, чтобы выявить истинную, или глобальную, структуру всего пространства-времени, связанного со шварцшильдовской черной дырой.

Чтобы лучше понять, как должна выглядеть эта глобальная картина, рассмотрим горизонт событий. На упрощенной двумерной диаграмме пространства-времени (см. правую сторону рис. 9.3) горизонт событийэто линия, идущая от момента $-\infty$ (отдаленное прошлое) к моменту $+\infty$ (далекое будущее) и находящаяся Точно на расстоянии 1 шварцшильдовского радиуса от сингулярности. Такая линия, конечно, правильно изображает расположение поверхности сферы в обычном трехмерном пространстве. Но когда физики попробовали вычислить объем этой сферы, они, к своему изумлению, обнаружили, что он равен нулю. Если объем некоторой сферы равен нулю, то это, конечно, просто точка. Иными словами, физики стали подозревать, что данная "линия" на упрощенной диаграмме должна быть в глобальной картине черной дыры на самом деле точкой!

Представьте себе к тому же произвольное число астрономов, выскакивающих из сингулярности, взлетающих на разные максимальные высоты над горизонтом событий и снова падающих обратно. Вне зависимости от того, когда именно они были выброшены из сингулярности, и от того, на какую именно высоту над горизонтом событий взлетали, все они будут пересекать горизонт событий в моменты координатного времени $-\infty$ (на пути наружу) и $+\infty$ (на обратном пути). В результате проницательные физики также заподозрят, что эти две "точки", $+\infty$ и $-\infty$, должны быть обязательно представлены в глобальной картине черной дыры в виде двух отрезков мировых линий!

Чтобы перейти от упрощенного изображения черной дыры к ее глобальной картине, следует переделать наше упрощенное изображение в гораздо более сложную диаграмму пространства-времени. И все же нашим конечным результатом окажется новая пространственно-временная диаграмма! На этой диаграмме пространственноподобные величины будут направлены горизонтально (слева направо), а временноподобные величины - вертикально (снизу вверх). Иными словами, преобразование должно сработать так, чтобы старые пространственная и временная координаты были заменены на новые пространственную и временную координаты, которые отражали бы полностью истинную природу черной дыры.

Рис. 9.6. Ускоренно движущийся наблюдатель. Равноускоренный наблюдатель (или объект) движется все быстрее и быстрее, увеличивая скорость в постоянном темпе. Его траектория в пространстве-времени имеет вид гиперболы. По мере того как скорость наблюдателя приближается к скорости света, мировая линия приобретает наклон, все более близкий к 45њ.
Чтобы постараться понять, как могут быть связаны между собой старая и новая системы координат, рассмотрим некоего наблюдателя вблизи черной дыры. Чтобы избежать падения на черную дыру и оставаться на постоянном расстоянии от нее, он должен располагать мощными ракетными двигателями, выбрасывающими потоки газов вниз. В плоском пространстве-времени, вдали от тяготеющих масс, космический корабль при работающих двигателях приобрел бы ускорение и двигался бы все быстрее и быстрее, ибо тяга ракетных двигателей обеспечила бы ему постоянное возрастание скорости. Мировая линия такого корабля изображена на диаграмме пространства-времени на рис. 9.6. Эта линия постепенно сближается с прямой, имеющей наклон 45њ, по мере того, как вследствие непрерывной работы двигателей скорость корабля приближается к скорости света. Кривая, изображающая подобную мировую линию, называется гиперболой. Наблюдатель, который находится близ черной дыры и пытается остаться на постоянном расстоянии от нее, будет постоянно испытывать ускорение, вызванное работой ракетных двигателей корабля. Проницательные физики заподозрят поэтому, что линии "постоянной высоты" в пересмотренной и улучшенной диаграмме пространства-времени вблизи черной дыры будут ветвями гипербол.

Наконец, тот наблюдатель, который пытается удержаться на горизонте событий, должен располагать невероятно мощными ракетными двигателями. Чтобы он не свалился внутрь черной дыры, эти двигатели должны работать с такой мощностью, что наблюдатель, будь он в плоском мире, двигался бы со скоростью света. Значит, мировые линии горизонта событий должны быть наклонены в точности под углом 45њ в пересмотренной и улучшенной диаграмме пространства-времени.

В 1960 г. независимо друг от друга Крускал и Секереш нашли требуемые преобразования, переводящие старую диаграмму пространства-времени для шварцшильдовской черной дыры в новую диаграмму - пересмотренную и улучшенную. Эта новая диаграмма Крускала-Секереша корректно покрывает все пространство-время и полностью выявляет глобальную структуру черной дыры. При этом подтверждаются все отмеченные ранее подозрения и обнаруживаются некоторые новые удивительные и неожиданные детали. Однако, хотя преобразования Крускала и Секереша сразу переводят старую картину в новую, наглядно представить себе их лучше в виде последовательности преобразований, схематически изображенных на рис. 9.7. Конечный результат - это опять-таки диаграмма пространства-времени (пространственное направление горизонтальное, а временное - вертикальное), причем лучи света, идущие к черной дыре и от нее, изображаются, как обычно, прямыми с наклоном 45њ.

Рис. 9.7. Переход к диаграмме Крускала-Секереша. Здесь схематически изображен переход от прежней простенькой диаграммы пространства-времени для черной дыры к гораздо более совершенной диаграмме Крускала-Секереша. Окончательная диаграмма включает две сингулярности и две внешние Вселенные.

Конечный результат преобразования поражает и на первых порах вызывает недоверие: вы видите, что там изображены на самом деле две сингулярности, одна в прошлом, а другая в будущем; вдобавок к этому вдали от черной дыры существуют две внешние Вселенные.

Но на самом деле диаграмма Крускала-Секереша правильна, и, чтобы понять это, мы вновь рассмотрим полет астронома, выброшенного из сингулярности, пересекающего горизонт событий и снова падающего обратно. Мы уже знаем, его мировая линия на упрощенной диаграмме пространства-времени необычна. Эта линия снова изображена слева на рис. 9.8. На диаграмме же Крускала-Секереша (рис. 9.8, справа) такая линия выглядит намного осмысленнее. Наблюдатель на самом деле выскакивает из сингулярности в прошлом и в конце концов попадает в сингулярность в будущем. Следовательно, такое "аналитически полное" описание решения Шварцшильда включает как черную, так и белую дыру. Наш астроном на самом деле вылетает из белой дыры и в конце концов падает в черную дыру. Обратите внимание на то, что его мировая линия повсюду наклонена к вертикали менее чем на 45њ, т.е. эта линия везде временноподобна и поэтому допустима. Сравнивая же левую и правую части рис. 9.8, вы обнаружите, что "точки" моментов времени $+\infty$ и $-\infty$ на горизонте событий теперь растянулись в две прямые линии, имеющие наклон 45њ, что подтверждает наши прежние подозрения.

Рис. 9.8. Мировая линия путешествия из черной дыры и обратно. На упрощенной диаграмме пространства-времени (слева) мировая линия астронома, вылетающего из черной дыры и падающего обратно в нее, выглядит сложно. На диаграмме Крускала-Секереша (справа) та же линия поддается простому истолкованию. Астроном вылетает из сингулярности в прошлом и падает в сингулярность в будущем.

При переходе к диаграмме Крускала-Секереша обнаруживается истинная природа всего пространства-времени вблизи шварцшильдовской черной дыры. На упрощенной диаграмме разные участки пространства-времени перекрывались друг с другом. Именно поэтому удаленные ученые, наблюдая падение астронома в черную дыру (или его вылет из нее), ошибочно предполагали, что имеются два астронома. На диаграмме Крускала-Секереша эти перекрывающиеся участки должным образом распутаны. На рис. 9.9 показано, как связаны между собой эти разные участки на обоих типах диаграмм. Внешних Вселенных на самом деле две (области I и III), как и внутренних частей черной дыры (области II и IV) между сингулярностями и горизонтом событий.

Рис. 9.9. Области пространства-времени. На упрощенной диаграмме разные области пространства-времени накладываются друг на друга. Напротив, на диаграмме Крускала-Секереша эти области представлены раздельно.

Рис. 9.10. Пространственно-временная сетка координат на упрощенной диаграмме. При упрощенном представлении координатные линии постоянного расстояния от черной дыры (штриховые) - это просто вертикальные прямые на диаграмме. Линии постоянного времени (пунктирные) - также прямые, но уже горизонтальные.
Полезно также проанализировать, как отдельные части пространственно-временной сетки преобразуются при переходе от упрощенной диаграммы к диаграмме Крускала-Секереша. В упрощенном представлении (рис. 9.10) штриховые линии постоянных высот над сингулярностью - это просто прямые, направленные вертикально. Пунктирные линии постоянного координатного времени - также прямые, но горизонтальные. Пространственно-временная сетка выглядит как кусок обычной миллиметровки.

На диаграмме Крускала-Секереша (рис. 9.11) линии постоянного времени (пунктирные) остались прямыми, но теперь они расходятся под разными углами. Линии же постоянного расстояния от черной дыры (штриховые) суть гиперболы, как мы подозревали раньше.

Анализируя рис. 9.11, можно понять, почему при переходе через горизонт событий пространство и время меняются ролями, как уже говорилось в предыдущей главе. Вспомним, что на упрощенной диаграмме (см. рис. 9.10) линии постоянного расстояния направлены по вертикали. Так, какая-то конкретная штриховая линия может изображать точку, находящуюся постоянно на высоте 10 км над черной дырой. Такая линия должна быть параллельна горизонту событий на упрощенной диаграмме, т.е. она должна быть вертикальной; поскольку она изображает нечто неподвижное во все моменты времени, то линия постоянного расстояния должна иметь временноподобное направление (иначе говоря, вверх) на этой упрощенной диаграмме.

Рис. 9.11. Пространственно-временная сетка координат на диаграмме Крускала-Секереша. Линии постоянного времени (точечные) здесь прямые, однако линии постоянного расстояния (штриховые) имеют вид гипербол. Заметна смена ролей между пространством и временем при пересечении горизонта событий.

На рис. 9.11 изображена диаграмма Крускала-Секереша; здесь штриховые линии постоянного расстояния имеют в общем направление вверх, если взять их достаточно далеко от черной дыры. Там они все еще временноподобные. Однако внутри горизонта событий штриховые линии постоянного расстояния ориентированы в общем горизонтально. Значит, под горизонтом событий линии постоянного расстояния имеют пространственноподобное направление! Следовательно, то, что обычно (во внешней Вселенной) связывается с расстоянием, ведет себя внутри горизонта событий подобно времени.

Аналогично этому на упрощенной диаграмме (см. рис. 9.10) линии постоянного времени горизонтальны и имеют пространственноподобное направление. Например, некая конкретная пунктирная линия может означать момент "3 ч дня для всех точек пространства". Такая линия должна быть параллельна пространственной оси на упрощенной диаграмме, т.е. она должна быть горизонтальной.

На рис. 9.11, где изображена диаграмма Крускала-Секереша, пунктирные линии постоянного времени в общем имеют пространственноподобное направление, если взять их далеко от черной дыры, т.е. они там почти горизонтальны. Но внутри горизонта событий пунктирные линии постоянного времени направлены в общем снизу вверх, т.е. ориентированы во временноподобном направлении. Итак, под горизонтом событий линии постоянного времени имеют временноподобное направление! Следовательно, то, что обычно (во внешней Вселенной) связывается со временем, ведет себя внутри горизонта событий подобно расстоянию. При пересечении горизонта событий пространство и время меняются ролями.

В связи с обсуждением свойств пространства и времени важно отметить, что на диаграмме Крускала-Секереша (рис. 9.11) обе сингулярности (и в прошлом, и в будущем) ориентированы горизонтально. Обе гиперболы, изображающие "точку" r = 0, имеют повсюду наклон менее 45њ к вертикали. Эти линии про-странственноподобные, и поэтому говорят, что шварцшильдовская сингулярность пространственноподобна.

Тот факт, что шварцшильдовская сингулярность пространственноподобна, приведет к важным заключениям. Как и в частной теории относительности (см. рис. 1.9), здесь невозможно двигаться со сверхсветовой скоростью, так что пространственнопо-добные мировые линии в качестве "путей" движения запрещены. Двигаться по мировым линиям, обладающим наклоном более 45њ к вертикальному (временноподобному) направлению, невозможно. Поэтому невозможно попасть из нашей Вселенной (на диаграмме Крускала-Секереша справа) в другую Вселенную (на этой же диаграмме слева). Любой путь, связывающий друг с другом обе Вселенные, должен хотя бы в одном месте быть пространственноподобным, а такие пути запрещены для движения. Кроме того, так как горизонт событий наклонен в точности под углом 45њ, то астроном из нашей Вселенной, опустившийся под этот горизонт, никогда больше не сможет из-под него выйти. Например, если кто-нибудь проникнет в область II на рис. 9.9, то все допустимые временноподобные мировые линии приведут его прямо в сингулярность. Шварцшильдовская черная дыра-это ловушка без выхода.

Рис. 9.12. Диаграммы вложения для черной дыры. Чтобы построить диаграммы вложения, пространство-время Крускала-Секереша "режется ломтиками" по пяти характерным гиперповерхностям. Переходя от среза А (на раннем временном этапе) к срезу Д (на позднем этапе), можно видеть эволюцию возникающей при этом "кротовой норы".
Чтобы полнее почувствовать природу геометрии Крускала-Секереша, поучительно рассмотреть пространственноподобные срезы диаграммы пространства-времени, выполненные этими авторами. Это будут диаграммы вложения искривленного пространства вблизи черной дыры. Такой метод получения срезов пространства-времени по пространственноподобным гиперповерхностям применялся нами и ранее (см. рис. 5.9, 5.10 и 5.11) и облегчил понимание свойств пространства в окрестностях Солнца.

На рис. 9.12 изображена диаграмма Крускала-Секереша, "нарезанная ломтиками" по характерным пространственноподобным гиперповерхностям. Срез А относится к раннему моменту времени. Первоначально две Вселенные, находящиеся вне черной дыры, никак не связаны между собой. На пути от одной Вселенной к другой пространственноподобный срез наталкивается на сингулярность. Поэтому диаграмма вложения для среза А описывает две раздельные Вселенные (изображенные в виде двух параллельных друг другу асимптотически плоских листов), в каждой из которых имеется сингулярность. Позднее при дальнейшей эволюции этих Вселенных сингулярности соединяются и возникает мостик, в котором сингулярностей уже нет. Это соответствует срезу Б, куда сингулярность не входит. С течением времени этот мостик, или "кротовая нора", расширяется и достигает наибольшего поперечника, равного двум шварцшильдовским радиусам (момент, соответствующий срезу В). Позднее мостик начинает снова стягиваться (срез Г) и наконец разрывается (срез Д), так что мы имеем снова две раздельные Вселенные. Такая эволюция кротовой норы (рис. 9.12) занимает менее 1/10 000 с, если черная дыра имеет массу Солнца.

Обнаружение Крускалом и Секерешем подобной глобальной структуры пространства-времени у черной дыры явилось решающим прорывом на фронте теоретической астрофизики. Впервые удалось построить диаграммы, полностью изображающие все области пространства и времени. Но после 1960 г. были достигнуты и новые успехи, прежде всего Роджером Пенроузом. Хотя на диаграмме Крускала - Секереша и представлена вся история, эта диаграмма простирается вправо и влево бесконечно далеко. Например, наша Вселенная простирается на бесконечное расстояние вправо на диаграмме Крускала-Секереша, тогда как влево на той же диаграмме до бесконечности уходит пространство-время "другой" асимптотически плоской Вселенной, которая параллельна нашей. Пенроуз первым понял, насколько полезно и поучительно было бы пользоваться "картой", отображающей эти бесконечные просторы на какие-то конечные области, по которым было бы возможно точно судить о происходящем вдали от черной дыры. Чтобы осуществить эту идею, Пенроуз привлек так называемые методы конформного отображения, с помощью которых все пространство-время, включая полностью и обе Вселенные, изображается на одной конечной диаграмме.

Чтобы познакомить вас с методами Пенроуза, обратимся к обычному плоскому пространству-времени типа изображенного на рис. 9.2. Все пространство-время там сосредоточено на правой стороне диаграммы просто потому, что невозможно оказаться на отрицательном расстоянии от произвольного начала. Вы можете находиться от него, скажем, в 2 м, но уж никак не в минус 2 м. Вернемся к рис. 9.2. Мировые линии Бори, Васи и Маши изображены там лишь на ограниченной области пространства-времени ввиду ограниченности размеров страницы. Если вам захочется посмотреть, где будут Боря, Вася и Маша через тысячу лет или где они были миллиард лет назад, вам понадобится намного больший лист бумаги. Гораздо удобнее было бы изобразить все эти далекие от точки "здесь и теперь" положения (события) на компактной, небольшой диаграмме.

Мы уже встречались с тем, что "самые удаленные" области пространства-времени именуются бесконечностями. Эти области крайне далеки от "здесь и теперь" в пространстве или во времени (последнее означает, что они могут находиться в очень далеком, будущем или очень далеком прошлом). Как видно из рис. 9.13, может быть пять типов бесконечностей. Прежде всего это I - -временноподобная бесконечность в прошлом. Она является тем "местом", откуда произошли все материальные объекты (Боря, Вася, Маша, Земля, галактики и все прочее). Все такие объекты движутся по временноподобным мировым линиям и должны уйти в I+ - временноподобную бесконечность будущего, куда-то в миллиарды лет после "теперь". Кроме того, имеется I0 - пространственноподобная бесконечность, и так как ничто не может двигаться быстрее света, то ничто (кроме разве тахионов) не может никогда попасть в I0. Если быстрее света не движется никакой из известных физике объектов, то фотоны движутся в точности со скоростью света по мировым линиям, наклоненным на 45њ на диаграмме пространства-времени. Это дает возможность ввести "$\mathcal{J}^-$ - световую бесконечность прошлого, откуда приходят все световые лучи. Существует, наконец, и {$\mathcal{J}^+$} - световая бесконечность будущего (куда уходят все 'световые лучи). Всякая удаленная область пространства-времени принадлежит одной из этих пяти бесконечностей; I -, {$\mathcal{J}^-$}, I0, {$\mathcal{J}^+$} или I+.
Рис. 9.13. Бесконечности. Наиболее удаленные "окраины" пространства-времени (бесконечности) делятся на пять типов. Временноподобная бесконечность прошлого (I -)-та область, откуда приходят все материальные тела, а временноподобная бесконечность будущего (I+)-та область, куда они все уходят. Световая бесконечность прошлого ($\mathcal{J}^-$) - та область, откуда приходят световые лучи, а световая бесконечность будущего - та область (I+), куда они уходят. Ничто (кроме тахионов) не может попасть в пространственноподобную бесконечность (I0). Рис. 9.14. Конформное отображение по Пенроузу. Существует математический прием, при помощи которого удается "стянуть" наиболее удаленные окраины пространства-времени (все пять бесконечностей) во вполне обозримую конечную область.

Метод Пенроуза сводится к математическому приему стягивания всех этих бесконечностей на один и тот же лист бумаги. Преобразования, осуществляющие такое стягивание, действуют наподобие бульдозеров (см. образное представление этих преобразований на рис. 9.14), сгребающих наиболее удаленные участки пространства-времени туда, где их можно лучше рассмотреть. Результат такого преобразования представлен на рис. 9.15. Следует иметь в виду, что линии постоянного расстояния от произвольной точки отсчета в основном вертикальные и всегда указывают временноподобное направление. Линии постоянного времени в основном горизонтальные и всегда указывают пространственноподобное направление.

На конформной карте всего плоского пространства-времени (рис. 9.15) пространство-время как целое уместилось в треугольнике. Вся временноподобная бесконечность в прошлом (I -) собрана в одну-единственную точку внизу диаграммы. Все временноподобные мировые линии всех материальных объектов выходят из этой точки, изображающей чрезвычайно удаленное прошлое. Вся временноподобная бесконечность в будущем (I+) собрана в одну-единственную точку вверху диаграммы. Временноподобные мировые линии всех материальных объектов во Вселенной в конце концов упираются в эту точку, изображающую далекое будущее. Пространственноподобная бесконечность (I0) собрана в точку справа на диаграмме. Ничто (кроме тахионов) никогда не может попасть в I0. Световые бесконечности в прошлом и в будущем {$\mathcal{J}^-$} и {$\mathcal{J}^+$} превратились в прямые с наклоном 45њ, ограничивающие диаграмму справа вверху и справа внизу по диагоналям. Световые лучи всегда идут по мировым линиям с наклоном 45њ, так что свет, приходящий из удаленного прошлого, начинает свой путь где-то на {$\mathcal{J}^-$}, а уходящий в далекое будущее кончает свой путь где-то на {$\mathcal{J}^+$}. Вертикальная прямая, ограничивающая диаграмму слева, - это просто временноподобная мировая линия выбранной нами произвольной начальной точки отсчета (r = 0).

Рис. 9.15. Диаграмма Пенроуза для плоского пространства-времени. Все пространство-время собрано внутрь треугольника с помощью способа конформного отображения, придуманного Пенроузом. Из пяти бесконечностей три (I -, I0, I+) сжаты до отдельных точек, а две - световые бесконечности {$\mathcal{J}^-$} и {$\mathcal{J}^+$} - стали прямыми линиями, имеющими наклон 45њ. Рис. 9.16. Пример конформной диаграммы Пенроуза. Эта диаграмма изображает фактически то же, что и рис. 9.2. Однако на конформной диаграмме мировые линии объектов представлены полностью (от удаленного прошлого I - до далекого будущего I+).

Чтобы покончить с описанием конформной диаграммы Пенроуза плоскогољљљ пространства-времени,љљљ мыљљљ изобразилиљљљ на рис. 9.16 полностью мировые линии Бори, Васи и Маши. Сравните эту диаграмму с рис. 9.2-ведь это одно и то же, только на конформной диаграмме мировые линии прослеживаются на всем у их протяжении (от удаленного прошлого I -љ до далекого будущего I+)

Изображение обычного плоского пространства-времени по способу Пенроуза не дает ничего сенсационного. Однако способ Пенроуза применим и к черным дырам! В частности, диаграмму Крускала-Секереша (см. рис. 9.11) можно отобразить конформно таким образом, что физик увидит все пространство-время всех Вселенных изображенным на одном-единственном листке бумаги. Как это наглядно изображено на рис. 9.17, конформные преобразования Пенроуза здесь снова работают подобно бульдозерам, "сгребающим" пространство-время. Окончательный результат показан на рис. 9.18.

Рис. 9.17. Конформное отображение черной дыры. Все пространство-время, связанное с шварцшильдовской черной дырой, может быть конформно отображено на один листок бумаги с помощью способа Пенроуза. Этот способ сводится к стягиванию всего пространства-времени в обозримую область, где его можно исследовать.

На диаграмме Пенроуза шварцшильдовской черной дыры (рис. 9.18) мы снова замечаем, что линии постоянного времени и линии постоянного расстояния ведут себя, по существу, так же, как и на диаграмме Крускала-Секереша. Горизонт событий сохраняет свой наклон в 45њ, а сингулярности (как в прошлом, так и в будущем) остаются пространственноподобными. Обмен ролями между пространством и временем, как и прежде, происходит при пересечении горизонта событий. Однако теперь самые удаленные части обеих связанных с черной дырой Вселенных находятся у нас перед глазами. Все пять бесконечностей нашей Вселенной (I -, {$\mathcal{J}^-$}, I0, {$\mathcal{J}^+$}, I+) видны справа на диаграмме, а слева на ней же можно увидеть все пять бесконечностей другой Вселенной (I -, {$\mathcal{J}^-$}, I0, {$\mathcal{J}^+$}, I+).

Рис. 9.18. Диаграмма Пенроуза для шварцшильдовской черной дыры. По существу, это то же, что и диаграмма Крускала-Секереша, изображенная на рис. 9.11. Однако здесь можно видеть и наиболее удаленные окраины двух Вселенных (I -, {$\mathcal{J}^-$}, I0, {$\mathcal{J}^+$} и I+ для каждой из них).

Мы можем теперь перейти к заключительному упражнению с шварцшильдовской черной дырой - выяснить, что увидят отчаянно любознательные астрономы-камикадзе, падающие на черную дыру и пересекающие горизонт событий.

Рис. 9.19. Космический корабль. Два любознательных и отчаянно смелых астронома полетели на этом корабле к черной дыре. Обратите внимание на то, что у этого корабля нет ракетных двигателей, которые замедлили бы его свободное падение. Носовой иллюминатор смотрит на центр черной дыры, а кормовой иллюминатор - на внешнюю Вселенную.

Рис. 9.20. Полет "камикадзе". Диаграмма Пенроуза изображает мировую линию полета астрономов к черной дыре, заканчивающегося их гибелью. В ходе полета снимаются четыре пары фотографий. Первый снимок (А) сделан далеко от черной дыры. Второй снимок (Б) соответствует моменту, когда астрономы пересекали горизонт событий. Третий снимок (В) сделан между горизонтом событий и сингулярностью. Последняя фотография (Г) снята непосредственно перед попаданием в сингулярность.
Космический корабль этих астрономов изображен на рис. 9.19. Носовой иллюминатор всегда направлен прямо на сингулярность, а кормовой - в противоположную сторону, т. е. на нашу внешнюю Вселенную. Отметим, что у космического корабля теперь нет ракетных двигателей для замедления его падения. Начав движение с большой высоты над черной дырой, астрономы просто вертикально падают со все увеличивающейся (по их измерениям) скоростью. Их мировая линия (рис. 9.20) проходит сначала через горизонт событий, а затем ведет в сингулярность. Так как их скорость всегда меньше скорости света, то мировая линия корабля на диаграмме Пенроуза должна быть временноподобной, т.е. повсюду обладать наклоном к вертикали менее 45њ. Во время путешествия астрономы делают на разных этапах пути четыре пары фотографий - по одной из каждого иллюминатора. Первая пара (снимки А) сделана, когда они были еще очень далеко от черной дыры. На рис. 9.21,А видно черную дыру как маленькое пятнышко в центре поля зрения носового иллюминатора. Хотя в непосредственной близости от черной дыры вид неба искажен, его остальная часть выглядит совершенно обычно. По мере того как скорость падения астрономов на черную дыру возрастает, свет от объектов из удаленной Вселенной, наблюдаемый через кормовой иллюминатор, испытывает все более и более сильное красное смещение.

Рис. 9.21.

Фото А. Далеко от черной дыры. С большого расстояния черная дыра выглядит как маленькое черное пятнышко в центре поля зрения носового иллюминатора. Падающие в дыру астрономы наблюдают через кормовой иллюминатор неискаженный вид Вселенной, из которой они прилетели.

Фото Б. Ни горизонте событий. Благодаря эффекту аберрации изображение черной дыры сжато в сторону центра поля зрения носового иллюминатора. Астроном, ведущий наблюдение в кормовой иллюминатор, видит лишь ту Вселенную, из которой прибыл корабль.

Фото В. Между горизонтом событий и сингулярностью. Опустившись под горизонт событий, астроном, наблюдающий в носовой иллюминатор, может видеть другую Вселенную. Приходящий из области другой Вселенной свет заполняет центральную часть его поля зрения.

Фото Г. Непосредственно над сингулярностью. Когда астрономы приближаются к сингулярности, через носовой иллюминатор становится все лучше видно другую Вселенную. Изображение же собственно черной дыры (имеющее вид кольца) становится все тоньше и тоньше, быстро приближаясь к краю поля зрения носового иллюминатора.

Хотя, по утверждению удаленных наблюдателей, падение космического корабля замедляется до полной его остановки на горизонте событий, астрономы на самом космическом корабле ничего подобного не заметят. По их мнению, скорость корабля все время возрастает и при пересечении горизонта событий она составляет заметную долю скорости света. Это существенно по той причине, что в результате падающие астрономы наблюдают явление аберрации света звезд, очень похожее на рассмотренное нами в гл. 3 (см. рис. 3.9, 3.11). Вспомните, что при движении с околосветовой скоростью вы заметите сильные искажения картины неба. В частности, изображения небесных тел как бы собираются впереди движущегося наблюдателя. Вследствие этого эффекта изображение черной дыры концентрируется ближе к середине носового иллюминатора падающего космического корабля.

Картина, наблюдаемая падающими астрономами с горизонта событий, показана на рис. 9.21,Б. Этот и последующие рисунки построены на основании расчетов, проделанных Кэннингэмом в Калифорнийском технологическом институте в 1975 г. Если бы астрономы покоились, изображение черной дыры занимало бы все поле зрения носового иллюминатора (рис. 8.15,Д). Но так как они движутся с большой скоростью, изображение сосредоточивается в середине носового иллюминатора. Его угловой поперечник примерно равен 80њ. Вид неба рядом с черной дырой очень сильно искажен, а астроном, ведущий наблюдение через кормовой иллюминатор, видит лишь ту Вселенную, из которой они прилетели.

Для понимания того, что же будет видно, когда корабль будет находиться внутри горизонта событий, вернемся к диаграмме Пенроуза шварцшильдовской черной дыры (см. рис. 9.18 или 9.20). Вспомним, что идущие в черную дыру световые лучи имеют на этой диаграмме наклон 45њ. Поэтому, оказавшись под горизонтом событий, астрономы смогут видеть и другую Вселенную. Лучи света из удаленных частей другой Вселенной (т.е. из ее бесконечности {$\mathcal{J}^-$} в левой части диаграммы Пенроуза) смогут теперь дойти до астрономов. Как показано на рис. 9.21,В, в центре поля зрения носового иллюминатора космического корабля, находящегося между горизонтом событий и сингулярностью, видна другая Вселенная. Черная часть дыры представляется теперь в виде кольца, отделяющего изображение нашей Вселенной от изображения другой Вселенной. По мере приближения падающих наблюдателей к сингулярности черное кольцо становится все тоньше, прижимаясь к самому краю поля зрения носового иллюминатора. Вид неба из точки прямо над сингулярностью показан на рис. 9.21,Г. В носовой иллюминатор становится все лучше и лучше видно другую Вселенную, а прямо на сингулярности ее вид целиком заполняет поле зрения носового иллюминатора. Астроном же, проводящий наблюдения через кормовой иллюминатор, видит на протяжении всего полета лишь нашу внешнюю Вселенную, хотя ее изображение становится все более и более искаженным.

Падающие астрономы отметят еще один важный эффект, который не отражен на "снимках" 9.21,А-Г. Вспомним, что свет, уходящий из окрестностей горизонта событий в удаленную Вселенную, претерпевает сильнейшее красное смещение. Это явление, называемое гравитационным красным смещением, мы обсуждали в гл. 5 и 8. Красное смещение света, приходящего из области с сильным гравитационным полем, соответствует потере им энергии. Обратно, когда свет "падает" на черную дыру, он испытывает фиолетовое смещение и приобретает энергию. Приходящие из удаленной Вселенной туда слабые радиоволны превращаются, например, в мощные рентгеновские или гамма-лучи непосредственно над горизонтом событий. Если описываемые диаграммами Пенроуза типа изображенной на рис. 9.18 черные дыры действительно существуют в природе, то свет, падающий на них из {$\mathcal{J}^-$}, скапливается в течение миллиардов лет около горизонта событий. Этот падающий свет приобретает чудовищную энергию, и когда астрономы опускаются под горизонт событий, они встречаются поэтому с неожиданной резкой вспышкой рентгеновских и гамма-лучей. Тот свет, который приходит из области {$\mathcal{J}^-$} другой Вселенной и собирается около горизонта событий, образует, как говорят, фиолетовый слой. Как мы увидим в гл. 13, существование таких фиолетовых слоев весьма существенно для серых и белых дыр.


<< 8. Черные дыры | Оглавление | 10. Черные дыры с электрическим зарядом >>

Публикации с ключевыми словами: черные дыры - гравитация - Общая теория относительности - решение Шварцшильда - решение Керра - белая дыра - сингулярность
Публикации со словами: черные дыры - гравитация - Общая теория относительности - решение Шварцшильда - решение Керра - белая дыра - сингулярность
См. также:
Все публикации на ту же тему >>

Мнения читателей [25]
Оценка: 3.7 [голосов: 240]
 
О рейтинге
Версия для печати Распечатать

Астрометрия - Астрономические инструменты - Астрономическое образование - Астрофизика - История астрономии - Космонавтика, исследование космоса - Любительская астрономия - Планеты и Солнечная система - Солнце


Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования