Т.Редже "Этюды о Вселенной", Мир/НиТ
<< 3.6. Элементарные частицы | Оглавление | 3.8. Сверхтекучесть >>
3.7. На пути к единой теории?
Чтобы как-то закончить описание общей картины, до сих пор рисовавшейся как действия различных сил в. природе, имеет смысл упомянуть о настойчивых попытках ученых построить единую (объединенную) теорию всех взаимодействий.
Что подразумевается под единой теорией? Точного и формального определения для нее не существует. Как правило, "единой" считается теория, заменившая и объединившая предшествовавшие ей отдельные теории и позволяющая предсказывать не только явления, предсказуемые прежними теориями, но еще и новые. Кроме того, в возникновении новой теории должна быть необходимость: старые теории подобны деталям, подогнанным друг к другу в оправе новой, каждая деталь нуждается в остальных, и ее собственное существование отдельно от других оказывается неоправданным.
Такая необходимость не всегда очевидна, и ее трудно оценить; иногда она сводится к необходимости эстетической, приводя к простоте, которая впоследствии оказывается мнимой. Для обозначения естественности какой-нибудь гипотезы Эйнштейн применял немецкое слово vernunftig (разумный).
Первым, кто пытался создавать единую теорию, был вовсе не Эйнштейн. В некотором смысле вся история физики это история подобных попыток. Эйнштейн, можно сказать, был первым физиком, подошедшим столь близко к синтезу этой теории, и первым, кто сознавал, насколько важна деятельность такого рода.
Вклад Эйнштейна
Сегодня мало кто из физиков считает оправданными усилия, предпринятые Эйнштейном на пути к полному объединению теорий, даже если многие признают, что в его последних работах имеется много интересных идей, которыми для различных построений впоследствии воспользовались другие, вдохновляемые примером прославленного мастера. Ни одна из этих теорий не достигала конечной цели. Причин этого много.
Сначала Эйнштейн думал объединить гравитацию и электромагнетизм, он считал, что все явления иной природы окажутся следствиями законов новой единой теории. Он не представлял, насколько расширится круг так называемых "элементарных" частиц и насколько усложнятся их внутренняя структура и поразительные свойства симметрии. Все это было открыто благодаря технической революции в экспериментальной физике уже после его смерти. Более того, Эйнштейн, как известно, так и не принял квантовую механику, хотя, открыв кванты света (фотоны), он стал одним из ее создателей.
Невозможно разобраться в запутанной структуре субатомного мира, не пользуясь квантовой механикой, без нее нельзя понять законы симметрии; планы экспериментов составляются на языке квантов. Поэтому не Эйнштейну, а другим, работавшим в другом направлении, удалось достичь определенных успехов в частичном объединении теорий. Среди таких объединенных теорий, созданных в последнее время, особенно важной стала теория Салама и Вайнберга (с участием Глэшоу; свой вклад в развитие этой теории внесли также т'Хоофт, Хиггс и другие), в которой объединяются слабые взаимодействия и электромагнитное поле, а гравитация остается в стороне. В самом ближайшем будущем, несомненно, появятся новые объединенные теории.
В каком смысле развитие физики можно назвать процессом объединения? Типичный пример нам дал Максвелл, объединивший оптику и теорию электромагнитного поля, показав при этом, что свет это колебания электромагнитного поля. Тот же Максвелл заложил основы для объединения термодинамики и аналитической механики, создав кинетическую теорию газов. Согласно этой теории, тепло представляет собой не особую форму энергии, а всего лишь механическую энергию, беспорядочно распределенную между миллиардами миллиардов частиц, составляющих газ.
Схема Эйнштейна, пожалуй, лучше очерчена и более точна. Эйнштейн был убежден (справедливо, как нам кажется) в том, что описание природы должно быть основано на понятии волны. Хорошо известным примером этого служит как раз электромагнитное поле. Само его название указывает, что это поле состоит из двух составляющих, из полей электрического и магнитного. Вполне законно рассматривать эти два поля как независимые величины, но сам Максвелл интуитивно чувствовал, что они каким-то таинственным образом связаны.
Теперь вспомним специальную теорию относительности и будем рассматривать разных наблюдателей, движущихся равномерно друг относительно друга. Эйнштейн сразу почувствовал исключительную важность того, что один наблюдатель может увидеть смесь электрического и магнитного полей, в то время как другой будет считать это же поле только электрическим, и наоборот. Отсюда и возникает та необходимость объединения, о которой мы говорили раньше. Так что релятивистский вариант теории Максвелла оказался объединенным в упомянутом нами смысле. В этом же смысле можно утверждать, что общая теория относительности объединила силы, казавшиеся несвязанными, например, гравитацию и инерцию, силы тяготения и центробежные.
Кроме самого Эйнштейна попытки создать единую теорию были предприняты еще в 1919 г. математиком Вейлем. Чтобы дать об этом некоторое представление (пусть даже неполное), я расскажу о понятии кривизны в общей теории относительности.
Гауссова кривизна
Применительно к линии на плоскости смысл понятия кривизны очевиден. Так, прямая линия не имеет кривизны, в то время как кривизна окружности постоянна. В общем случае кривизна линии меняется от точки к точке.
Физиков, однако, интересуют не только простые геометрические фигуры. Так, больший интерес вызывает рассмотренный Гауссом случай поверхности в. трехмерном пространстве. Почему? Как известно, кривую линию на плоскости всегда можно выпрямить, не растягивая и не укорачивая ее. Если же взять сферическую поверхность, то какой бы маленький кусок ее мы ни пытались уложить на плоскость, нам все равно пришлось бы его вытянуть, сломать или еще как-то деформировать. Таким образом, сфере присуще особое внутреннее свойство, отличающее ее от плоскости, а именно кривизна, выражающая само геометрическое существо и не зависящая от способа построения сферы в трехмерном пространстве.
Нарисовав треугольник на поверхности Земли, мы обнаружим заметное отличие его свойств от свойств треугольника на плоскости: сумма углов последнего в точности равна 180o ( радиан). Если же начертить треугольник с вершинами на Северном полюсе, в городах Кито (Эквадор) и Либревиль (Габон), то получится треугольник с тремя прямыми углами, сумма которых будет равна 270o!
Такое расхождение не позволяет печатать достоверных земных атласов на плоских листах. Кстати, согласно известной теореме сферической геометрии, сумма внутренних углов треугольника уменьшенная на 180o, пропорциональна площади треугольника:
В этой формуле все углы берутся в радианах. В случае рассмотренного земного треугольника мы, кстати, имеем
откуда
Площадь, как мы видим, становится равной одной восьмой всей сферической поверхности. Действительно, треугольник с тремя прямыми углами занимает один октант сферы. Приведенную формулу можно представить в следующем виде:
по этой формуле можно вычислить 1/R2, т.е. "гауссову кривизну", зная площадь треугольника и его углы, т.е. величины, которые можно измерить, просто гуляя по Земле, не привлекая никаких сведений о внешнем пространстве.
Все эти представления были обобщены Риманом на случай пространств любой размерности; тогда место величины 1/R2 занимает знаменитый тензор Римана, учитывающий изменение кривизны по всем направлениям.
Кривизна и материя
Выдающаяся идея Эйнштейна состояла в том, чтобы связать эту кривизну с распределением вещества в пространстве. Согласно Эйнштейну, пространство обладает кривизной, а мы до сих пор ее не замечали, потому что она мала и проявляется только через гравитационные эффекты.
Особенно наглядной является картина пространства, предложенная Эддингтоном. Он сравнивал пространство с хорошо натянутым эластичным полотнищем, которое в нормальном состоянии лежит целиком в плоскости. Если положить на полотнище тяжелые шары (символизирующие небесные тела), то оно искривится, изменив при этом свою геометрию. Каждый из двух находящихся рядом шаров стремится скатиться в яму, образованную соседом. Так, через посредство полотнища между шарами появляется сила взаимодействия, аналогичная силе тяготения. Действительно, в общей теории относительности силы тяготения возникают за счет искривления окружающего пространства. Между кривизной пространства и распределением вещества существует соотношение вида .
В этой формуле G представляет универсальную гравитационную постоянную, с скорость света (около 300000 км/с), и G/c2 приблизительно равно 10 - 27 см/г. Плотность ρ измеряется в граммах на кубический сантиметр, так что правая часть соотношения измеряется в см2, как и кривизна. Приведенная формула, по существу, представляет собой основной результат, полученный из уравнений поля Эйнштейна (если не считать длинного ряда тензорных индексов, от перечисления которых мы избавим читателя). Плотность воды соответствует кривизне R, равной примерно 100 млн. км. Таков радиус сферы, которую должна заполнить вода (если бы она была несжимаема), чтобы стать гравитационно-нестабильной и коллапсировать в черную дыру.
Параллельный перенос Леви-Чивита
Итальянскому математику Леви-Чивита пришла в голову гениальная идея, как объяснить и описать кривизну. Эта идея оказалась источником разнообразных обобщений и была использована выдающимся французским математиком Картаном.
Проделаем мысленный эксперимент: поместим пушку на Северный полюс и направим ее ствол в сторону г. Кито (Эквадор). Затем перевезем пушку по поверхности Земли в Кито, а из Кито в Либревиль (Габон) (оба города находятся на экваторе), сохраняя во время путешествия ствол пушки параллельным его первоначальному направлению. По прибытии в Либревиль ствол пушки будет направлен вдоль меридиана, т.е. на Юг. Если же мы сразу перевезли бы пушку в Либревиль, то он по прибытии был бы направлен вдоль экватора (в сторону Кито). Итак, результат зависит от конкретного пути, и в нашем случае (речь идет о результате точном и общем) угол между двумя этими направлениями и равен тем 90o, которые добавились к сумме внутренних углов треугольника.
Все это означает, что если пространство обладает кривизной, то вообще нельзя говорить о параллельности двух направлений, не исходящих из одной точки. В нашем пространстве этот эффект настолько мал, что заметить его в эксперименте типа эксперимента Леви-Чивита практически невозможно; тем не менее эффект существует и имеет большое философское значение. Нельзя в принципе делать какие-либо утверждения относительно взаимной ориентации двух удаленных друг от друга объектов; кривизна пространства вносит свои коррективы.
Теория Вейля
Идея Вейля заключалась в том, чтобы рассматривать кривизну нового типа, которая не только поворачивала бы ствол пушки непредсказуемым образом, но и меняла бы его длину. В пространствах Вейля не только невозможно точно узнать, в одну ли сторону направлены стволы двух далеких друг от друга пушек (математики их называют векторами), но и нельзя выяснить, одинаковой ли они длины.
Оговоримся сразу: теория неприменима по причинам чисто физическим. Легко себе представить пушку, все характеристики которой, кроме ориентации в пространстве, сохраняются неизменными, но просто невозможно мановением волшебной палочки изменить масштаб. Было бы очень удобно менять по своему желанию средние расстояния между атомами, но они определяются химическими силами и изменить их, увы, не в наших силах. Нельзя вообразить воду, которая при нормальных условиях имела бы плотность, равную 2 г/см3. Все это привело к тому, что идея Вейля не была подхвачена, если не считать сложных и очень глубоких математических обобщений (среди которых теория Вайнберга и Салама), основанных на так называемых калибровочных (gauge) теориях, берущих начало от теории Вейля. Вейль считал, что кривизна нового типа связана непосредственно с электромагнитным полем; присутствие последнего должно вносить неконтролируемые, хотя и небольшие изменения масштабов, аналогичные изменениям в направлении, к которым приводит гравитация.
Предложено уже множество единых теорий. Эйнштейн выдвигал еще теории, основанные на представлении о несимметричном метрическом тензоре. В этих теориях угол между прямыми Л и В не равнялся углу между прямыми В и А. Желаемого успеха эти теории не имели.
Другие объединенные теории были предложены Клейном и Калуцей. Эти авторы добавили к пространству-времени еще одно измерение, доведя их число до пяти. Они рассматривали электрический заряд как скорость в пятом измерении, в результате чего электромагнитное поле вдоль пятого измерения становилось похожим на гравитационное.
Эти попытки также не были лишены различных изъянов; они оказались недостаточно vernunftig (разумными), чтобы прижиться. Кстати, такие же замечания справедливы в отношении предложения Вейля; обе теории намного ближе друг к другу, чем может показаться с первого взгляда; они входят как составные части в современные, более глубокие разработки.
Надо ли удивляться появлению этого или какого-либо иного пятого измерения, которые время от времени привлекаются для решения различных задач, связанных с классификацией частиц? Возможно, приверженцы "летающих тарелок", уже распознали в нем источник явлений, преподнесенных нам в фильме "Контакты третьего типа". Более того, иногда предлагается вводить не только одно дополнительное измерение, встречаются модели, в которых их целая дюжина. Все эти предложения, лишенные четкой теоретической основы, напоминают огромную связку ключей, в которой физик роется в тщетной надежде найти подходящий для открытия своего замка. Отметим, что "измерением" называется любая степень свободы движения частиц, которая с математической точки зрения аналогична, хотя и формально, привычному для нас понятию "размерности" (откуда и произошло это название).
Не существует, строго говоря, "средства передвижения", которое позволило бы нам совершить путешествие в этом дополнительном измерении. Для этого пришлось бы выполнять различные странные действия, как, например, замена протонов нейтронами; речь идет о действиях, еще имеющих смысл на микроскопическом уровне, когда в них вовлечено небольшое число частиц (например, в опытах на ускорителе), но они совершенно немыслимы в куске вещества макроскопических размеров.
Поэтому надо очень осторожно относиться к появляющимся иногда в средствах массовой информации сенсационным сообщениям, не прошедшим строгой проверки. Трактовка таких сомнительных сведений может привести к ошибочным выводам. Впрочем, хотя призыв к осторожности, конечно, уместен, тем не менее надо отметить, что в настоящее время наблюдается интересный процесс обновления научных исследований и бурление всевозможных оригинальных идей в области объединения теорий. После смерти Эйнштейна многочисленные неудачи, преувеличенный академизм некоторых научных публикаций определенного сорта привели к падению интереса и доверия к усилиям, предпринимающимся на полном приключений пути к объединению. События последних двадцати пяти лет вдохнули новую жизнь в этот процесс. Нужно упомянуть среди них техническую революцию, позволившую осуществить ранее немыслимые способы проверки теории относительности.
Многообещающи в этом смысле результаты, достигнутые в исследовании элементарных частиц. Весьма вероятно, что в течение последующих пяти или десяти лет мы окажемся свидетелями выдающихся успехов: частичное объединение теорий слабых и электромагнитных взаимодействий, осуществленное Саламом и Вайнбергом, указывает, что какое-то движение происходит, и происходит оно в правильном направлении.
<< 3.6. Элементарные частицы | Оглавление | 3.8. Сверхтекучесть >>
Публикации с ключевыми словами:
Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы
Публикации со словами: Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы | |
См. также:
Все публикации на ту же тему >> |