Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

На первую страницу Т.Редже "Этюды о Вселенной", Мир/НиТ
<< 3.1. Вводные замечания | Оглавление | 3.3. Соотношение неопределенности >>

 

3.2. Квантование

Понятие "кванта" лежит в основе всей атомной физики, и его использование оказало на развитие техники гораздо более сильное влияние, чем теория относительности. По этой причине мне кажется уместным затратить некоторое время, чтобы пояснить природу квантовой механики.

Механика

Пространство (кантовское трехмерное) заполнено материей, движущейся под действием сил, вызванных самой же материей. Цель физики состоит в выявлении природы этих сил и в том, чтобы представить их в лаконичном математическом виде. "Объяснить" силы – значит вывести для них математическое выражение из малого числа аксиом, причем эти выражения должны быть достаточно простыми и применимы к множеству разнообразных явлений. Так, общая теория относительности объясняет гравитационные силы, а уравнения Максвелла объясняют силы электромагнитные и природу света.

Задача механики – математически описать движения материальных тел, если известны силы, действующие на эти тела. Ньютон открыл закон всемирного тяготения, но, что еще важнее, он также ввел формализм классической механики, и это позволило ему вычислить с хорошей точностью орбиты планет и их взаимодействие. К концу девятнадцатого столетия понятие механики претерпело значительные изменения по сравнению с исходным представлением Ньютона; Лагранж сформулировал принцип действия, Максвелл вывел уравнения электромагнитного поля, использовав определенную аналогию с механикой сплошных сред.

Модель атома Резерфорда

Мы уже обсуждали кризис, приведший к созданию релятивистской механики. Столь же интересен и кризис, который привел к возникновению понятия "кванта". Благодаря опытам Томсона к началу нашего века стало ясно, что электроны представляют собой отрицательно заряженные частицы, являющиеся составной частью атома. Электрический ток является не чем иным, как упорядоченным движением электронов вдоль металлического провода; в этом смысле электрон – это "квант" электричества.

Исходя из такой информации, Резерфорд предложил планетарную модель атома. Согласно этой модели, электроны вращаются, как планеты, вокруг центрального положительно заряженного ядра, которое притягивает их подобно Солнцу. Напомним, что заряды разных знаков притягиваются, а одинаковых – отталкиваются. Такая аналогия между атомом и Солнечной системой сразу же захватила воображение большинства людей. Она действительно очень полезна, поскольку позволяет создать зрительный образ атома, а также избежать длинных разъяснений. Тем не менее пользоваться аналогией можно только до определенного предела. Электроны все строго одинаковы и энергично отталкиваются друг от друга, поскольку справедлив принцип Паули, запрещающий им занимать одно и то же состояние. Ни одно из этих свойств не имеет планетарного аналога.

Основной недостаток модели Резерфорда следует из природы электрических зарядов. Заряд, на который не действуют силы, движется равномерно и прямолинейно. Если же на него действует магнитное поле или притяжение какого-нибудь атомного ядра, то траектория заряда будет искривлена; из теории Максвелла следует, что такой заряд должен испускать электромагнитные волны и что при этом он потеряет часть своей энергии. На самом деле единственный способ произвести электромагнитные волны состоит как раз в том, чтобы "потрясти" какие-нибудь заряды, что очень просто сделать, если речь идет об электронах.

Итак, электрон внутри атома должен излучать, т.е. непрерывно терять энергию, так что в конце концов он должен будет упасть на ядро. Таким образом, атом Резерфорда оказывается нестабильным и должен в своем развитии дойти до коллапса, излучив при этом вспышку света, что полностью противоречит наблюдаемому факту стабильности вещества. Эти трудности модели стали особенно ясны во время Сольвейского конгресса 1911 г. Как при чтении трудов конгресса, так и в личных беседах с Резерфордом датчанин Нильс Бор имел возможность осознать недостатки и достоинства такой модели. По какой же причине орбиты электронов оказываются стабильными?

Модель Бора

Историк науки Томан Кун воспроизвел во всех подробностях различные этапы изнурительного труда Бора вплоть до 1913 г., в котором модель атома водорода приняла окончательный вид. Бор ограничился рассмотрением атома водорода, так как он очень прост (единственный электрон вращается вокруг одного протона) и поддается математическому анализу, поскольку электронные орбиты подчиняются законам Кеплера. Существует бесконечное число возможных орбит, характеризуемых средним расстоянием от ядра и сплющенностью, или эксцентриситетом.

Каким же образом можно получить эмпирическую информацию об этих орбитах? Ответ на этот вопрос дает спектроскопия. Если в стеклянной трубке, наполненной разреженным газом, возбудить электрический разряд, то мы вызовем излучение света (этим объясняется, например, свечение рекламных огней). Разговаривая со спектроскопистом из Копенгагена Хансеном, Бор понял, что существуют очень простые эмпирические правила, управляющие излучением световых волн газообразным водородом.

Свет и радиоволны имеют одинаковую природу, но частота света намного выше, чем у радиоволн (примерно в миллион раз). Атомы, оказывается, излучают свет вполне определенной частоты, как миниатюрные радиостанции, причем частота эта зависит от вида атома. В 1905 г. для объяснения фотоэлектрического эффекта Эйнштейн предположил, что световое излучение сконцентрировано в "пакетах" (квантах света, или фотонах), энергия которых пропорциональна частоте, в соответствии с соотношением Планка.

Таким образом, атом может излучать свет, теряя энергию дискретно, порциями, пропорциональными частоте. В модели Резерфорда падение электрона на ядро представляло непрерывный процесс, напоминающий спираль, по которой двигалась до конца своих дней станция "Скайлэб". Бор же постулировал (и это был очень смелый шаг), что электроны могут находиться только на некоторых определенных орбитах из бесконечного числа их, предсказываемого моделью. Тогда, перескакивая с одной орбиты на другую, электрон теряет вполне определенное количество энергии, в точности равное предсказанному эмпирическими формулами для излучения света.

Квантование орбит

Так Бор, определив правила для орбит, пришел к квантованию. Правила Бора для атома водорода выглядели очень просто. Трудности, возникшие при их распространении на другие атомы, потребовали для своего преодоления создания квантовой механики. Основное утверждение квантовой механики, в сущности, состоит в том, что электрон, как и любая другая материальная частица, живет еще и второй жизнью – жизнью волны (дуализм волна – частица). Формула Планка определяет связь между энергией частицы и ее частотой, если частица рассматривается как волна. Квантовая механика устанавливает полное соответствие между волновыми свойствами и свойствами частицы.

Обычно бывает (или бывало) трудно представить волновую природу электрона, которая проявляется, только когда длина волны оказывается большой в сравнении с препятствиями, встречающимися на его пути. Это как раз и происходит внутри атома, поэтому невозможно проследить за движением электрона, считая его воображаемым шариком в миниатюрной солнечной системе. Скорее нужно подходить к атому, как к аналогу звукового резонатора, как к странному музыкальному инструменту, в котором вместо звуковых волн мы имеем волны электронные. Именно такое сравнение дает возможность понять суть квантования орбит. Трубка органа может колебаться только на определенной частоте, зависящей от формы и длины трубки; то же происходит в случае струны рояля. Теперь нужно говорить не об электронных орбитах, потерявших смысл, а, скорее, о различных "модах", т.е. видах колебаний. Меняя моду, электрон излучает световую волну с характерной частотой, зависящей от конкретного перехода.

Применение идей Бора при рассмотрении более сложных атомов позволило надежно обосновать периодическую систему Менделеева и выяснить природу химической связи. Столь же важным оказалось открытие того, что дуализм волна – частица универсален и присущ всякой материи. Несколько замечаний, высказанных Эйнштейном на эту тему, позволили Шредингеру вывести знаменитое уравнение, описывающее движение этих волн материи.

Остается вопросом истории, какие же причины привели Эйнштейна (да и Шредингера) в стан противников новой физики, поднявшейся из пепла старой, в частности, именно благодаря им. Разумеется, и до сих пор существуют сомнения относительно правильной интерпретации квантовой механики. Большинство физиков придерживается интерпретации так называемой Копенгагенской школы. Все, включая самого Эйнштейна, признали выводы и формулы, которые следуют из этой интерпретации. Тем не менее вплоть до своей смерти в 1955 г. Эйнштейн считал квантовую механику несовершенной теорией, неопределенность которой представляет собой серьезный недостаток, частично закрывающий от нас истину.


<< 3.1. Вводные замечания | Оглавление | 3.3. Соотношение неопределенности >>

Публикации с ключевыми словами: Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы
Публикации со словами: Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы
См. также:
Все публикации на ту же тему >>

Мнение читателя [1]
Оценка: 3.1 [голосов: 131]
 
О рейтинге
Версия для печати Распечатать

Астрометрия - Астрономические инструменты - Астрономическое образование - Астрофизика - История астрономии - Космонавтика, исследование космоса - Любительская астрономия - Планеты и Солнечная система - Солнце


Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам

Комментарии, вопросы? Пишите: info@astronet.ru или сюда

Rambler's Top100 Яндекс цитирования