Т.Редже "Этюды о Вселенной", Мир/НиТ
<< Предисловие к итальянскому изданию | Оглавление | 1.2. Парадокс близнецов >>
Глава 1. Относительность и космология
1.1. Относительность: вводные замечания
Существует две теории относительности специальная (появившаяся в 1905 г.) и общая (получившая обоснование в 1916 г.). Первая рассматривает движение тел со скоростями, сравнимыми со скоростью света (больше которой не бывает), и отправной точкой для нее служит классический подход к пространству и времени. Общая же теория относительности дополняет специальную, объясняя гравитацию на основе кривизны пространства-времени. Трудно объяснить специальную теорию относительности тому, кто совсем не имеет математической подготовки; еще труднее дается популяризация общей теории. Тем не менее математика специальной теории относительности не столь уж сложна: она не выходит за рамки действий над квадратными корнями. Встречающиеся трудности, скорее всего, психологического характера, поскольку теория относительности полностью опровергает предрассудки, основанные на житейском и потому неадекватном опыте.
В этом разделе мы поговорим об основах специальной и общей теории относительности, а в дальнейшем остановимся на некоторых конкретных вопросах.
Принцип относительности Галилея
Теория относительности Эйнштейна прежде всего занимается движением материальных тел. По определению тело, которое движется (грубым примером такого материального тела мог бы послужить поезд или самолет), занимает в различные моменты времени различные положения. Можно определить скорость и ускорение, с которыми оно перемещается. Обычно мы знаем положение поезда относительно какой-либо фиксированной точки, например станции. Если мы поменяем станцию, то изменится также и наше описание движения поезда, хотя оно будет эквивалентным старому и совершенно законным. Следовательно, существует бесконечное множество различных способов описать данное физическое явление, и они, кстати, не исчерпываются простой сменой станций. Что касается перемещений, например, внутри поезда, то пассажиры предпочитают отсчитывать расстояния от вагона-ресторана. С их точки зрения, таким образом, поезд стоит на месте, а рельсы и пейзаж движутся назад. Если бы на глаза пассажиров были надеты повязки и если бы они не могли чувствовать толчки и слышать перестук колес, то они вовсе не имели бы возможности определить, в движении находится поезд или стоит на месте. Кстати, на вокзале многим из нас приходилось, глядя из окна вагона на рядом идущий поезд, ошибочно принимать движение прибывающего поезда за отправление своего.
Еще Галилей установил (причем при отсутствии поездов), что невозможно почувствовать, находимся ли мы в состоянии покоя или в состоянии абсолютного равномерного движения, т.е. движения без толчков, остановок или виражей. Мы можем определить состояние только относительного движения двух объектов (поезда и станции, например). Так происходит потому, что законы физики одинаковы при любой скорости движения поезда; более того, мы проносимся вместе со всей Солнечной системой несколько сотен километров в секунду в космическом пространстве, даже не замечая этого. Галилею мы обязаны также теоремой сложения скоростей. Если на шоссе нам навстречу движется автомобиль и если скорость нашего автомобиля так же, как и скорость встречного, равна 150 км/ч, то наша относительная скорость равна 300 км/ч, т.е. сумме двух скоростей. Такое общепринятое представление является отражением предрассудков, о которых мы уже говорили, и его следует пересмотреть. Принимая указанную точку зрения и относительность движения, мы принимаем так называемый принцип относительности Галилея.
Опыт Майкельсона и Морли
В конце прошлого столетия двум американским физикам Майкельсону и Морли пришла в голову идея, развитие и проверка которой окончательно опровергли галилеевское представление о сложении скоростей. Тогда уже было известно, что скорость света чуть меньше чем 300000 км/с. (Это в миллион раз больше скорости реактивного самолета.) В те времена считалось, что свет распространяется в заполняющем все пространство эфире подобно тому, как звуковые волны распространяются в воздухе. Эфир понятие неточное, породившее весьма большую путаницу, от описания которой мы избавим читателя. К счастью, представление об эфире как о физической реальности осталось в прошлом, и привела к этому как раз теория относительности. Идея Майкельсона и Морли заключалась в том, что свет, распространяясь в эфире, должен иметь в различных направлениях разные скорости. Так, если поднимается ветер, то звук распространяется медленнее против ветра, в то время как с попутным ветром его скорость увеличивается. Так вот, наша Земля обращается вокруг Солнца со скоростью около 30 км/с, непрерывно меняя при этом направление движения, из-за чего оба исследователя ожидали в один прекрасный момент почувствовать, как подует в лицо "эфирный ветер". Они сконструировали чувствительнейшую аппаратуру, с помощью которой предполагали "почувствовать" этот ветер и тем самым определить скорость света. Если бы опыт Майкельсона и Морли удался, мы могли бы сказать, что тело, неподвижное относительно эфира, находится в абсолютном покое, поскольку оно не чувствует никакого ветра.
Опыт, к счастью, не удался. Майкельсон и Морли не почувствовали никакого "ветра", свет продолжал распространяться со скоростью 300000 км/с (эту скорость принято обозначать буквой с) во всех направлениях и во все времена года. Результат выглядел парадоксальным. Ведь, казалось бы, если мы движемся навстречу свету, то он должен к нам приближаться со скоростью, равной сумме нашей скорости и собственной скорости с, точно так же, как в случае встречных автомобилей на шоссе. Так что прощайте и сложение скоростей, и, чего скрывать, "здравый смысл"!
Принцип относительности Эйнштейна
Незаметный служащий Патентного бюро города Берна увидел истину там, где именитые ученые, слегка задев ее и не заметив, прошли мимо. Эйнштейн считал, что принцип относительности должен быть сохранен во что бы то ни стало и что нельзя говорить об абсолютном движении или покое даже при измерении скорости движения света. Итак, он принял постоянство скорости света за тот краеугольный камень, на котором возводится здание теории относительности. Далее следует отложить в сторону теорему сложения скоростей и воспользоваться другой формулой, которая практически совпадает с первой в случае движения со скоростью, малой по сравнению с с, но вносит существенные поправки при движении с большой скоростью. Прежде всего, если по этой новой формуле складывать какую бы то ни было скорость со скоростью света, мы всегда получим с, как и следует из опыта Майкельсона и Морли. Скорость света здесь играет такую же роль, какую до Эйнштейна играла бесконечно большая скорость. Если вместо двух автомобилей мы возьмем два космических корабля, движущихся навстречу друг другу со скоростями 150000 км/с, то их относительная скорость будет уже не 300000 км/с, а всего лишь 240000 км/с, и, во всяком случае, она всегда будет меньше, чем с световой барьер непреодолим. В случае движения автомобилей поправка до смешного мала (одна миллиардная часть миллиметра за секунду), и поэтому никто никогда ее не замечал.
Нельзя, однако, отбрасывать привычное правило сложения скоростей, не подвергая всего остального серьезному пересмотру, последствия которого, мягко говоря, могут привести в замешательство. Достаточно следующего примера. Представим самолет, который вылетел из Турина в Рим; на полпути с его борта послан в пространство радиосигнал, который, как известно, так же, как и свет, представляет собой электромагнитную волну и распространяется во всех направлениях с такой же скоростью. Человеку на земле покажется, что сигнал, пройдя в противоположных направлениях одинаковые пути, одновременно достигнет (спустя тысячную долю секунды) как Турина, так и Рима. Иное мнение будет у пилотов. С их точки зрения сигнал, как и прежде, движется со скоростью 300000 км/с, но Рим теперь "движется навстречу" ему, в то время как Турин "удаляется". Поэтому сигнал сначала прибудет в Рим, а потом уже достигнет Турина. Чье восприятие правильное: пилотов или человека на земле? По Эйнштейну и в соответствии с результатами выдающихся экспериментов, выполненных в течение последних семидесяти лет, правы все: два события, которые одному наблюдателю покажутся одновременными, не будут таковыми с точки зрения другого наблюдателя. В рассмотренном примере разница минимальна (всего две миллиардные доли секунды), но она может стать весьма значительной в лаборатории, когда выполняются эксперименты, например, с элементарными частицами. Время, таким образом, не является абсолютным, как утверждали Ньютон и Кант, да и течет оно не одинаково для всех наблюдателей.
Кажущиеся парадоксы
Принцип относительности Эйнштейна ставит абсолютный предел скорости. Невозможно заставить двигаться тело или послать сигнал со скоростью, большей скорости света. Теория затрудняет жизнь тех, кто пытается достичь этой скорости, и подвергает их наказаниям, которые становятся все более суровыми, принимая форму остроумных (хотя и кажущихся) парадоксов. Если, находясь на земле, мы будем наблюдать маятник, который качается на борту самолета (допустим, что это возможно), то в каждый момент времени мы можем определить скорость маятника, складывая скорость самолета и скорость маятника относительно самолета. Если опираться на здравый смысл (т.е. на представление Галилея), то мы должны были бы увидеть удаляющийся маятник, который совершает колебания все с той же частотой, с которой он колебался бы на земле. Однако принцип относительности Эйнштейна утверждает, что при соединении колебательного движения маятника и поступательного движения самолета скорость маятника в каждый момент времени окажется меньше, чем можно было бы ожидать. Наказание становится все сильнее по мере приближения к скорости света. По этой причине, когда будут выполнены расчеты, окажется, что маятник колеблется медленнее и отмеряет более длинные секунды, если он находится на борту самолета.
Все, что мы говорили по поводу маятника, вполне справедливо для любой системы, движущейся внутри самолета. Эффект изменения времени смехотворно мал всего одна секунда за сто тысяч лет, но тем не менее его заметят современные атомные часы, и, кроме того, он представляет интерес с принципиальной точки зрения. На эту тему в свое время была развернута горячая дискуссия, и в пылу страстей произносились обвинительные речи против теории относительности, которые сегодня воскрешают в памяти процесс клерикалов против Галилея.
Читатель может возразить, что ситуация симметрична, и, следовательно, пилоты должны тоже заметить замедление явлений, происходящих на земле. Так что же происходит во время путешествия? Каждый принадлежащий к одной из двух групп (пилоты или наземные службы) должен был бы ожидать отставания часов своих товарищей из другой группы, что, очевидно, не может быть справедливо для всех. Мы могли бы (и, кстати, это было проделано) поднять в воздух атомные часы и по возвращении самолета сравнить время, которое покажут летавшие часы, с тем, которое показывают точно такие же часы, оставшиеся на земле. Опыт говорит, что отстают всегда те часы, которые проделали путешествие. Так что же нам теперь делать с принципом относительности: как-то переделать его или вообще выбросить за борт, как предлагают некоторые его слишком рьяные противники? Ни то ни другое! Расчеты отставания бортовых часов с точки зрения земного наблюдателя справедливы до тех пор, пока самолет движется равномерно (т.е. по прямой и без торможения), но должны быть исправлены, если, как происходит в действительности, он должен совершить вираж, чтобы вернуться в Турин. Как раз во время виража отставание часов увеличится еще больше, нарушится симметрия, о которой шла речь, и исчезнет кажущийся парадокс.
Раз с точки зрения пилотов путешествие продлится меньше времени, то и пройденный путь должен им показаться короче, если они будут лететь все время с постоянной скоростью. (Не надо пугаться, потому что расстояние изменится всего лишь на одну тысячную долю миллиметра, если весь путь равен тысяче километров.) Для космического корабля будущего, который отправится в полет к ближайшей к нам звезде Альфа созвездия Центавра (называемой Альфой Центавра), расположенной на расстоянии около четырех световых лет (40000 млрд. км; один световой год равен расстоянию, которое свет проходит в течение одного года), со скоростью, равной 4/5 скорости света (240000 км/с), эффект уже будет весьма ощутим. Земляне будут считать, что весь путь туда и обратно проделан за десять лет, тогда как часы космонавтов покажут всего шесть лет. Для космонавтов расстояние до Альфы уменьшится до 2,4 светового года. Если бы этот путь проделал один из близнецов, то он вернулся бы домой на четыре года моложе своего брата, оставшегося на Земле.
Эквивалентность массы и энергии
Так что же произойдет, если мы на самом деле попытаемся ускорить материальное тело до скоростей, близких к скорости света? Чтобы так поступить, нам придется сообщить телу энергию, и при этом мы столкнемся с удивительным явлением. Теория относительности утверждает эквивалентность массы и энергии в соответствии с теперь уже знаменитой формулой: E = mc2 (которую словами можно выразить так: "Энергия равна массе, умноженной на квадрат скорости света"). Если мы проделаем расчеты, то увидим, что один грамм массы вещества соответствует огромной энергии, а именно свыше 25 млн. кВтч. Вначале увеличение энергии тела сопровождается едва уловимым увеличением массы и, следовательно, инерции тела. Поэтому становится чуть-чуть труднее ускорить его дальше. По мере приближения скорости к величине с этот эффект, становясь все внушительнее, делает невозможным преодоление скорости света.
Появившаяся на свет для спасения теории относительности от указанного да и от других противоречий формула E = mc2 получила блестящее подтверждение, когда было открыто деление урана U235, при котором одна тысячная часть полной массы исчезает, чтобы вновь целиком обнаружиться в виде атомной энергии. Даже в обычных химических реакциях соблюдается соотношение E = mc2, но количества вещества, появляющиеся или исчезающие во время реакции, меньше одной десятимиллиардной части всей массы, и обнаружить их невозможно даже с помощью очень точных весов.
Важно подчеркнуть, что в специальной теории относительности рассматривается равномерное движение, т.е. движение с постоянной скоростью, при котором не изменяется направление движения. Если движение происходит с ускорением, обусловленным внешними силами, например гравитационным притяжением, то специальную теорию относительности уже нельзя применять. Упомянутый выше парадокс близнецов, к рассмотрению которого мы ниже вернемся, возник именно из-за попытки использовать специальную теорию относительности применительно к двум системам, одна из которых движется ускоренно относительно другой.
Принцип эквивалентности
В общей теории относительности законы физики выражаются одинаково в любой системе отсчета; в ней, следовательно, рассматриваются также тела, движущиеся ускоренно относительно друг друга. Эйнштейн исходил из хорошо известного эмпирического факта из результатов знаменитого (хотя, может быть, никогда и не проведенного) эксперимента Галилея, в котором два тяжелых тела с разными массами, сброшенные с Пизанской башни, достигали земли одновременно. Существуют два способа определения массы тела. Первый способ (инерциальный) заключается в измерении ускорения, сообщаемого телу известной силой; при втором (гравитационном) измеряется притяжение тела к какой-нибудь близко расположенной массе (если в качестве такой массы служит Земля, то измеряется, следовательно, вес тела). Уже Ньютон находил весьма странным, что оба способа определения массы дают одинаковые результаты в пределах ошибок эксперимента; что так и должно быть, по существу, следует из опыта Галилея. Эйнштейн возвел этот таинственный эмпирический факт в ранг конструктивного принципа принципа эквивалентности.
Известность получил его мысленный эксперимент (Gedanken experiment), в котором ученый рассматривает лабораторию, помещенную в закрытой кабине лифта, в двух совершенно различных ситуациях. В первом случае кабина лифта подвешена неподвижно в гравитационном поле Земли, и наблюдатель, присутствующий в ней, видит, что предметы падают с привычным ускорением свободного падения. Во втором случае кабина лифта находится в космосе, далеко от каких-либо масс, но при этом ракетный двигатель сообщает ей ускорение, в точности равное ускорению свободного падения, и наблюдатель этого не ощущает. Эйнштейн привлек внимание к тому, что если справедлив принцип эквивалентности, то совершенно невозможно отличить падение тел под действием силы тяжести от падения под действием инерции. Таким образом, гравитация и инерция в некотором смысле приводят к одинаковым эффектам.
Кривизна пространства
Взяв за отправную точку принцип эквивалентности и пройдя сквозь головокружительную серию мысленных экстраполяций, ведомый безошибочным эстетическим чутьем, Эйнштейн пришел к понятию кривизны пространства. Чтобы как-то осознать связь гравитации с кривизной, представим себе стол с резиновой поверхностью вместо привычной твердой. Бильярдный шар, положенный на этот стол, образует углубление. Материальное тело вызывает деформацию такого же рода в окружающем пространстве. Если положить на стол два шара, то каждый из них стремится попасть в углубление, образованное другим. Возникающая в этом случае сила "притяжения" полностью аналогична силе гравитации. Все же деформация пространства, вызванная даже таким гигантским телом, как Солнце, едва заметна. Кроме объяснения гравитации теория Эйнштейна предсказывает различные тонкие эффекты, а также объясняет аномалию в движении планеты Меркурий, в свое время заставившую исследователей придумать новую планету Вулкан, которую, однако, никто не наблюдал.
Что еще более важно, теория относительности предсказывает точно такое же поведение света в гравитационном поле, как и поведение тел под действием силы тяжести. Это предсказание, подтвержденное в 1919 г. во время солнечного затмения, сделало Эйнштейна известным и широкой публике. Итак, направленные вверх световые волны, так же, как и камень, брошенный вверх, должны терять энергию движения. В то же время свет по самой своей природе вынужден, как всегда, распространяться со скоростью 300000 км/с и не может замедляться. Свет, оказывается, теряет энергию, уменьшая свою частоту и увеличивая тем самым длину волны. В результате такого эффекта цвета радуги совсем незаметно смещены в сторону красного. Даже длина волны радиосигнала, направленного в космическое пространство с Земли, увеличится на одну миллиардную часть. Поэтому внешнему наблюдателю будет казаться, что токи в антенне, излучающей радиоволны, колеблются медленнее, чем на самом деле, хотя и очень ненамного, т.е. что на поверхности Земли время течет медленнее, чем во внешнем пространстве. Разница составляет всего лишь около одной секунды в пятьдесят лет, но современные атомные часы способны заметить ее. В Электротехническом институте им. Галилео Феррариса в Турине первый такой эксперимент позволил измерить эту величину для разности высот между Плато Роза и Турином. Потеря во времени хоть и мала, но приводит к серьезным техническим последствиям, и современная навигационная сеть, использующая спутники связи, должна учитывать этот эффект. На поверхности Солнца эффект замедления времени в тысячу раз больше, а на нейтронных звездах, плотность вещества которых такова, что масса, равная массе Солнца, занимает область с размерами, сравнимыми с размерами города, указанный эффект достигает 10%. В черной дыре, наконец, мы доходим до 100%, и, следовательно, на поверхности черной дыры течение времени вовсе прекращается. Гравитационное поле здесь настолько сильно, что не выпускает свет наружу. Список парадоксальных явлений можно было бы продолжить.
Развитие общей теории относительности
Естественной лабораторией для проверки общей теории относительности служит все космическое пространство: собранные вместе массы миллиардов галактик вызывают искривление пространства в глобальном масштабе. По этой причине самые значительные успехи теории достигнуты при обращении на современной основе к наиболее глубинным космологическим периодам времени. Модель "большого взрыва" (the big bang), согласно которой рождение Вселенной произошло примерно 20 млрд. лет назад при гигантском взрыве (см. стр. 49), представляет собой наиболее замечательный результат такого развития теории.
В последние годы своей жизни Эйнштейн интенсивно работал над проблемой объединения теорий гравитации и электромагнитных явлений в некую "сверхтеорию". Эти его попытки не увенчались успехом, равным образом как и усилия многих других, жаждавших опередить великого мастера в достижении цели.
В некотором смысле Эйнштейн оказался жертвой той лавины, которую он сам привел в движение. Перед его смертью уже существовал целый калейдоскоп ускорительных установок; происходили открытия все новых элементарных частиц, но никто еще не мог предугадать те сложные законы симметрии, которым они подчиняются. С другой стороны, Эйнштейн не имел привычки внимательно следить за эмпирическими данными. Его три основополагающие работы 1905 г. были порождены скорее соображениями эстетического характера: речь шла о том, чтобы путем утверждения новых фундаментальных принципов исключить кажущуюся асимметрию в прежних законах. Специальная теория относительности все же родилась, хотя Эйнштейн при этом не ссылался на опыт Майкельсона и Морли; теория броуновского движения увидела свет, несмотря на то что ее автор был знаком только поверхностно с работой Броуна, выполненной за сто лет до этого.
По этой причине, в частности, Эйнштейн останется в нашей памяти как человек уникальный и неповторимый. Он не оставил после себя выдающихся учеников, как в отличие от него сделали Ферми, Эренфест, Зоммерфельд и другие великие ученые. Поэтому будущая единая теория поля хотя и получит в наследство от Эйнштейна общий идейный импульс и философскую постановку проблемы, но будет отличаться своими характерными техническими деталями и конкретной практической реализацией. В настоящее время уже предприняты определенные усилия для синтеза такой теории и работа в этом направлении продолжается. Следующее десятилетие, возможно, окажется для физики решающим.
<< Предисловие к итальянскому изданию | Оглавление | 1.2. Парадокс близнецов >>
Публикации с ключевыми словами:
Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы
Публикации со словами: Галилео Галилей - солнечная система - космогония - астрофизика - Общая теория относительности - электрослабое взаимодействие - элементарные частицы | |
См. также:
Все публикации на ту же тему >> |