О взрыве и о том, какая от него польза
С.А.Новиков(Филиал N 4 Московского инженерно-физического института, Саров (Арзамас-16) Нижегородской обл.)Опубликовано в Соросовском образовательном журнале, N 7, 1996 г. Содержание
Взрывные технологии обработки материалов
Различают технологии, основанные на взрыве в контакте с материалом (контактные) и основанные на работе продуктов взрыва (взрыв на расстоянии).Взрывная резка (контактная)
Один из основных методов взрывной резки материалов основан на использовании явления образования кумулятивных струй. Схема кумулятивного заряда с конической выемкой и металлической облицовкой приведен на рисунке 1а. Схема формирования металлической кумулятивной струи показана на рисунке 1б. При схождении металла к оси заряда возникают огромные (до нескольких десятков гигапаскалей) давления в узкой зоне (явление кумуляции), расплавленный металл в виде тонкой струи с большой скоростью "выплескивается" по оси заряда. При взаимодействии этой струи с преградой происходит ее пробитие на большую глубину (именно так кумулятивные снаряды поражают танковую броню). Схема пробития преграды струей показана на рисунке 1в. Глубина пробития оценивается по формуле
Рис. 1. Действие кумулятивного заряда. а - Схема кумулятивного заряда с конической выемкой и металлической облицовкой этой выемки; б - схема формирования кумулятивной струи; в - схема пробивания преграды кумулятивной струей. |
Рис. 2. Профиль импульса давления с ударным фронтом (а) и профиль импульса давления, включающий ударную волну разрежения (б). |
Взрывная сварка
Сварка взрывом обеспечивает надежное соединение двух пластин (двухслойный материал) и нескольких пластин (многослойный материал). Пластины могут быть из различных металлов (не свариваемых с помощью обычной сварки), геометрические размеры пластин могут достигать нескольких метров. Механизм сварки напоминает образование кумулятивной струи, образующейся в зоне соударения пластин.Компактирование взрывом
К числу контактных взрывных технологий относится взрывное компактирование. Одним из наглядных примеров таких операций является взрывное компактирование ультрадисперсных алмазов (УДА). УДА с размерами частиц 2-20 нм получаются во взрывных экспериментах за счет углерода, входящего в состав ВВ. Однако для практических целей частицы таких малых размеров не нужны. Для создания, например, абразивных инструментов требуется алмазный порошок с размерами более 10 мкм. Спекание (компактирование) УДА до таких размеров - сложная технологическая задача. В последние годы разрабатываются эффективные способы ее решения. Один из очевидных путей - создание давлений ~ 10 ГПа (10 ГПа - прочность алмаза) для пластического спекания порошка. Основная трудность этого направления - обеспечить отсутствие обратного перехода (алмаз-графит), который неизбежно начинается при таких давлениях ударного сжатия. Второй путь, недавно освоенный экспериментаторами, - создание сравнительно небольших ударных давлений, но действующих большое время (~100-400 мкс). При этом из-за малой температуры ударного сжатия не происходит указанного обратного перехода и получается > 90% прозрачных алмазных частиц с размерами до 1 мм, что дает возможность использования их и для декоративных целей. Оба этих направления реализованы в разработанных в последние годы специальных взрывных устройствах, позволяющих сохранять укрупненные алмазные частицы после нагружения.
Рис. 3. Фотография стального цилиндра диаметром ~ 500 мм, разрезанного с помощью ударных волн разрежения. |
Рис. 4. Фотография отпечатка ветки рябины на медной пластине при детонации тонкого слоя взрывчатого вещества. |
Публикации с ключевыми словами:
взрыв - детонация - ядерный взрыв - кумулятивный эффект
Публикации со словами: взрыв - детонация - ядерный взрыв - кумулятивный эффект | |
См. также:
|
Астрометрия
-
Астрономические инструменты
-
Астрономическое образование
-
Астрофизика
-
История астрономии
-
Космонавтика, исследование космоса
-
Любительская астрономия
-
Планеты и Солнечная система
-
Солнце