Колебания и волны. Лекции.
В.А.Алешкевич, Л.Г.Деденко, В.А.Караваев (Физический факультет МГУ)Издательство Физического факультета МГУ, 2001 г. Содержание
Лекция 4
Распространение возмущений в системе с большим числом степеней свободы. Скорость распространения. Возбуждение волн. Группа волн и ее скорость. Волновое уравнение. Волны в сплошном шнуре. Отражение волн. Возбуждение стоячих волн в шнуре. Моды колебаний. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление.
Распространение возмущений в системе с большим числом степеней свободы.
Рассмотрим колебания масс на резиновом шнуре (рис. 4.1а). Отклоним несколько масс в середине шнура от положения равновесия (рис 4.1б), и затем отпустим их в момент времени Как показывает опыт, эта начальная конфигурация, представляющая собой по форме импульс, с течением времени трансформируется в два одинаковых импульса, которые побегут в разные стороны с некоторой конечной скоростью c (рис. 4.1в). Эти импульсы добегут до концов шнура, изменят свою полярность при отражении и побегут в обратном направлении (рис. 4.1г). После встречи в середине шнура они отразятся еще раз, восстановят исходную полярность и спустя время вновь встретятся в середине, сформировав исходный импульс. Затем этот процесс с периодом будет повторяться до тех пор, пока импульсы не затухнут из-за диссипации энергии.
Рис. 4.1. |
С точки зрения повседневного опыта в этом нет ничего удивительного, поскольку смещения группы масс ведут к возникновению упругих сил, стремящихся вернуть эту группу в положение равновесия и одновременно вывести соседние частицы из положения равновесия.
С точки зрения описания колебаний "на языке мод" также понятно, что отклонив, а затем отпустив группу частиц, мы возбуждаем много мод. Колебания всех частиц происходят одновременно на нескольких нормальных частотах Все эти частоты различны, и сумма нормальных колебаний представляет собой биения. Поскольку через время, равное периоду биений, колебания группы частиц в центре шнура восстановятся, то очевидно, что период биений равен упоминавшемуся несколько ранее времени
Определим скорость с, исходя из представления о биениях, как суперпозиции нормальных колебаний. Для этого вначале перепишем дисперсионное соотношение (3.55) в виде
(4.1) |
Строго говоря, при наличии многих частот в спектре колебаний, даваемых формулой (4.1), биения не будут периодическими - начальная конфигурация не повторяется. Визуально это будет проявляться в искажении формы бегущих импульсов, если длина импульса (импульс "накрывает" мало частиц), а шнур достаточно длинный. Говорят, что искажение импульса связано с дисперсией "среды" (шнура с массами), по которой импульс распространяется.
Это искажение будет ничтожным, если (группа состоит из большого числа колеблющихся масс). Так обычно и происходит при распространении возмущений в твердом теле, где (расстояние между узлами кристаллической решетки, около которых колеблются атомы).
Если то в спектре колебаний доминируют низшие моды, которые характеризуются волновыми числами где Частоты этих мод получаются из формулы (4.1):
(4.2) |
Здесь использовано приближение при Эта зависимость изображена на рис. 4.2.
Рис. 4.2. |
Обратим внимание, что низшие частоты располагаются эквидистантно: Поэтому период биений (см. также формулу (3.14)) получается равным:
(4.3) |
Если учесть, что длина шнура то скорость движения импульса в среде без дисперсии равна:
(4.4) |
Если мы будем увеличивать число масс на шнуре фиксированной длины, тем самым уменьшая расстояние то мы сделаем предельный переход к непрерывному распределению масс - т.е. к однородному весомому шнуру, при этом
(4.5) |
является массой единицы длины однородного шнура (иногда употребляют термин "плотность единицы длины"). Поэтому окончательно для скорости распространения импульса произвольной формы по шнуру имеем
(4.6) |
Например, в случае тонкого резинового шланга с линейной плотностью натянутого с силой скорость движения импульса получается равной Такая сравнительно небольшая величина скорости позволяет легко наблюдать распространение и отражение импульса.
Итак, подведем некоторые итоги.
1. Если пренебречь периодической структурой среды, то скорость распространения импульса не зависит от его формы, а сам импульс при распространении не искажается (нет дисперсии).
2. Если ось x направить вдоль шнура и задать начальное возмущение (в момент ) в виде то с течением времени возмущение шнура будет иметь вид:
(4.7) |
Первое слагаемое описывает возмущение, бегущее со скоростью в положительном направлении оси х, указанном на рис. 4.1, а второе соответствует импульсу, распространяющемуся в противоположном направлении.
3. У концов невесомого шнура с массами оба импульса отражаются. Отраженный импульс имеет противоположную полярность (направление смещения ) по сравнению с падающим.
Аналогичные граничные условия реализуются для сплошного массивного шнура с закрепленными концами (рис. 4.3).
Рис. 4.3. |
4. В области перекрытия бегущих импульсов образуется колебание, называемое стоячей волной. Так мы приходим к понятиям бегущих и стоячих волн, при этом стоячая волна может рассматриваться как суперпозиция волн, бегущих в противоположных направлениях.
Возбуждение волн.
Рассмотрим колебания невесомого шнура с грузами, правый конец которого закреплен, а левый под действием внешней силы в момент времени начинает смещаться по гармоническому закону:
(4.8) |
Под действием этой силы грузы, связанные друг с другом отрезками натянутого шнура, рано или поздно начнут совершать вынужденные гармонические колебания с частотой Естественно, что систему грузов (по аналогии с системой с двумя грузами) можно заметно раскачать лишь в случае резонанса, когда частота совпадает с одной из нормальных частот
Вначале придут в движение грузы вблизи левого подвижного конца шнура, а с течением времени в колебания будут вовлекаться все новые грузы.
Такие колебания представляют собой волновой процесс (волну), распространяющийся "слева - направо" с некоторой скоростью На рис. 4.4 изображены положения колеблющихся масс в некоторый момент времени Поскольку грузы колеблются "поперек" направления распространения (оси Oх), то волна называется поперечной. Эта волна добежит до правого закрепленного конца шнура и отразится. После этого будут существовать две волны: исходная бегущая (иногда ее называют падающей волной) и отраженная волна, которая бежит навстречу падающей. Спустя время отраженная волна достигнет левого конца, снова отразится, и "сформируется" мода колебаний. Конфигурация этой моды задается волновым числом (см. соотношение (4.1)).
Рис. 4.4. |
Рассмотрим подробнее падающую волну с этим Пространственный период изображенный на рис. 4.4 как минимальное расстояние между массами, колеблющимися в фазе, называется длиной волны. Длина волны связана с волновым числом соотношением:
(4.9) |
Если силы вязкого трения, приложенные к каждому из грузов, малы, то амплитуды колебаний всех грузов будут одинаковы и равны Теперь мы можем записать уравнение бегущей волны - уравнение, описывающее смещение любой из масс в произвольный момент времени. Для частоты волнового числа и амплитуды оно имеет вид:
(4.10) |
Выражение называется фазой волны. Уравнение (4.10) отражает тот факт, что все массы колеблются с одинаковой частотой имеют одинаковую амплитуду однако эти колебания различаются по фазе
Публикации с ключевыми словами:
колебания - волны
Публикации со словами: колебания - волны | |
См. также:
|