Астронет: Научная Сеть/НС Колебания и волны http://variable-stars.ru/db/msg/1175791/page36.html |
Колебания и волны. Лекции.
В.А.Алешкевич, Л.Г.Деденко, В.А.Караваев (Физический факультет МГУ)Издательство Физического факультета МГУ, 2001 г. Содержание
Распространение акустических волн конечной амплитуды.
Если возмущения плотности и давления в акустической волне не являются исчезающе малыми по сравнению с равновесными значениями и то говорят, что волна имеет конечную амплитуду. Обычно такие волны обладают высокой интенсивностью, и для описания их распространения необходимо решать нелинейные уравнения гидродинамики. Анализом распространения волн конечной амплитуды занимается отдельная наука, называемая нелинейной акустикой. В наших лекциях мы ограничимся лишь небольшим объемом сведений из нелинейной акустики.
Пусть в газе вдоль оси Ox распространяется мощная акустическая волна. Если пренебречь вязкостью газа, то одномерное движение частиц вдоль этой оси будет описываться уравнением Эйлера и уравнением непрерывности:
(6.35) |
Сложность решения этой системы уравнений состоит в том, что в их левых частях содержатся нелинейные члены. Обычно эту нелинейность называют кинематической нелинейностью. Поскольку уравнения (6.35) содержат три неизвестные функции и то необходимо их дополнить третьим уравнением, связывающим и Для газа оно, как уже отмечалось ранее, является уравнением адиабаты:
(6.36) |
Представим и в виде:
(6.37) |
Затем подставим (6.37) в (6.36):
(6.38) |
Полагая, что разложим правую часть (6.38) в ряд:
(6.39) |
Пренебрегая членами, имеющими порядок малости и выше, окончательно запишем уравнение адиабаты в виде:
(6.40) |
где
Второй член в правой части (6.40) начинает давать заметный вклад при сильном сжатии (разрежении), поэтому связь между возмущениями давления и плотности становится нелинейной. Эта нелинейность обусловлена нелинейностью сил межмолекулярного взаимодействия и называется физической нелинейностью. Она вместе с кинематической нелинейностью может кардинально повлиять на характер распространения интенсивных акустических волн.
Перейдем теперь к установлению основных закономерностей такого распространения. Для этого подставим (6.37) в уравнения (6.35). Тогда получим:
(6.41) |
Чтобы помочь читателю преодолеть психологический барьер, связанный с анализом системы нелинейных уравнений (6.40) - (6.41), мы покажем вначале, как из этих уравнений можно легко получить волновое уравнение, описывающее линейный режим распространения волн, изученный подробно ранее.
Линейный режим.
Удержим в уравнениях (6.41) только линейные члены. Тогда получим
(6.42) |
Исключим две неизвестные функции, например, и Для этого продифференцируем первое уравнение по времени а второе - домножим на и продифференцируем по координате а затем вычтем одно уравнение из другого. С учетом третьего уравнения члены, содержащие и сократятся, и мы получим известное нам волновое уравнение
(6.43) |
описывающее распространение без искажений вдоль оси Ox со скоростью волны гидродинамической скорости.
Аналогичным образом можно получить волновые уравнения для возмущений давления и плотности Не останавливаясь далее на решениях таких уравнений (мы это сделали детально в предыдущих лекциях) перейдем теперь к нелинейному режиму распространения волн конечной амплитуды.
Нелинейный режим.
Вначале попытаемся качественно описать основные черты нелинейного распространения волн, не прибегая к математике. Наиболее просто это сделать, если обратиться к влиянию физической нелинейности (формула 6.36). Если вспомнить, что скорость звука то легко понять, что различные части волны могут двигаться с разными скоростями.
На рис. 6.8 изображена зависимость (6.36) и для трех значений плотности и проведены касательные к графику функции угловые коэффициенты которых равны квадрату скорости распространения волны. Из этого графика можно сделать качественный вывод о том, что чем выше плотность участка волны, тем больше его скорость.
Рис. 6.8. |
Если, например, гармоническая волна (волна плотности) распространяется вдоль оси Ox (рис. 6.9), то из-за различия скоростей ее разных частей она будет постепенно менять свою форму. На рисунке для простоты показаны лишь три скорости и
Рис. 6.9. |
Как показывает опыт, распространение волны можно охарактеризовать тремя этапами.
На I этапе волна трансформируется в пилообразную, обладающую скачком плотности (а также давления и скорости ). Эта пилообразная волна приобретает ударный фронт, ширина которого по мере распространения уменьшается и достигает величины порядка длины свободного пробега молекул газа.
На II этапе происходит нелинейное затухание волны даже при очень малой вязкости и теплопроводности среды. Этот, на первый взгляд, неожиданный эффект связан с переходом в тепло части кинетической энергии молекул, обладающих гидродинамическими скоростями . Эти молекулы под действием перепадов давления на длине свободного пробега приобретают кинетическую энергию, которая затем переходит в тепло при неупругих столкновениях. Простейший расчет показывает, что энергия, перешедшая в тепло, будет существенно больше, чем на I этапе, когда на ширине происходили многочисленные столкновения. Естественно, что эта тепловая энергия заимствуется у распространяющейся волны.
III этап связан с возрастающим влиянием вязкости и теплопроводности, которые особенно сильны в областях больших перепадов скорости и температуры (вследствие локального адиабатического нагрева или охлаждения при колебаниях газа). Резкие перепады скорости приводят к возрастанию сил вязкости, а перепады температуры на масштабах порядка длины волны влекут отток тепла из более нагретых областей в менее нагретые. Из-за этих причин часть энергии волны переходит в тепло, и ее амплитуда уменьшается. Поскольку поглощение звука пропорционально квадрату частоты, быстрее затухают волны высших частот, и волна трансформируется в гармоническую волну с исходной (начальной) частотой.