Находка каждого нового метеорита имеет большую научную ценность, прежде всего, как вещество, имеющее внеземное происхождение. Метеориты по генезису принято делить на две группы: а) падений и б) находок.
Метеорит 'Луженьга' по происхождению относится к группе метеоритов-находок. Он был обнаружен в 30 км юго-западнее г. Великий Устюг в бассейне р. Луженька. Исследования его были начаты в 1994 г., когда в руки авторов попал образец весом 230 г, отколотый и переданный в Великоустюжский краеведческий музей Н.Г. Мамарыковым. В июне 1996 г. одним из авторов была предпринята кратковременная экспедиция в район находки метеорита. В полевых условиях были уточнены некоторые его параметры. Визуально обследована поверхность надземной части метеорита, форма которого несколько напоминает тетраэдр с размером граней до 0,6м. По визуальному обследованию подтверждена идентичность состава доставленного ранее образца для исследований и основной части метеорита, находящейся на месте его падения.
|
Ориентируясь на образованную при падении метеорита яйцевидную форму воронки, удлиненная ось которой указывает на сломанную на шестиметровой высоте от поверхности земли сосну, можно заключить, что метеорит падал с юго-запада на северо-восток под углом 53° к горизонту.
Результаты исследования и их обсуждение
Минералого-петрографическое исследование
Внешне порода имеет темно-серый цвет со сфероидальными образованиями черного цвета, окруженными тонкокристаллической массой, и редкими пятнами буро-коричневого цвета.
Как показал просмотр поверхности образца и аншлифа, вещество метеорита плотное, на близповерхностных участках отмечаются pедкие тонкие трещинки. На полированных поверхностях распилов, которые были сделаны для изучения внутреннего строения образца, хорошо проявляется шлировая структура метеорита. Визуально в свежем сколе и аншлифе под микроскопом (МБС-9) при увеличении до 14 крат видны зеленые, иногда коричневатого цвета, отдельные зерна с хорошо выраженным бронзовым отливом на плоскостях спайности пироксена. Содержание рудных минералов в общем незначительное. На полированной поверхности аншлифа под микроскопом обнаруживаются включения с металлическим блеском, но доля их очень мала. Включения особо хорошо заметны при наклонном наблюдении аншлифа. Для исследования рудных минералов в метеорите часть вещества его была раздроблена на крошку до размеров частиц 1-2 мм. При этом включения с металлическим блеском частично высвобождались в форме листочков. Воздействием постоянного магнитного поля (В<1 Тл) у отдельных частиц были обнаружены ферромагнитные свойства. После растирания вещества в агатовой ступке из подготовленного для анализов порошка выделено 11,8% магнитной фракции.
|
Микроскопическое исследование шлифов метеорита производилось с помощью поляризационного микроскопа ПОЛАМ-Р.213. Под микроскопом устанавливается полнокристаллическая структура породы метеорита. Размер кристаллов колеблется от 0,2-0,3 мм до 1,5-1,8 мм, Определен (Д.Ф.Семенов) минерально-петрографический состав: плагиоклаз (40%), оливин (30%), ромбический пироксен (15%), моноклинный пироксен (10%), биотит (3%) и рудный минерал (2% объема породы).
Плагиоклаз представлен анортитом (угол максимального симметричного погасания полисинтетических двойников составляет 43-44°), буроватым в проходящем свете, часто имеющим волнистое угасание. Очертания кристаллов ровные, не оплавлены.
Оливин слагает изометричные, часто округлые зерна размером 0,5-0,7 мм. В большинстве своем они окружены реакционной каемкой ромбических пироксенов (шириной 0,05-0,1 мм). Местами отмечаются шлировые скопления (по 3-4 зерна) оливина. В шлифах он выделяется по высокому двупреломлению и шагреневой поверхности.
Ромбический пироксен образует зерна удлиненно-призматической формы, размером до 1,8 мм по удлинению. Он диагностируется по слабо выраженному плеохроизму в бурых тонах, низкому двупреломлению (до 0,015) и прямому, иногда небольшому (до 10°) косому погасанию. Моноклинный пироксен образует короткопризматические зерна размером 0,5-0,8 мм в поперечнике с косым (относительно спайности) погасанием и большим (более 0,020) двупреломлением.
Биотит буровато-красный, ясно плеохроирующий, до почти бесцветного, с прямым (относительно весьма совершенной спайности) погасанием. Размер отдельных чешуи составляет 0,2-0,5 мм по удлинению. Судя по густой красноватой окраске - это титанобиотит.
Рудный минерал имеет удлиненные, нередко таблитчатые формы, размер зерен до 0,3 мм в поперечнике. В проходящем свете черный, местами бурый. По-видимому, представлен ильменитом.
Микроструктура породы гипидиоморфнозернистая (рис. 1) с более высокой степенью идиоморфизма оливина и пироксенов по отношению к плагиоклазу. Местами степень идиоморфизма темноцветных минералов и плагиоклаза близка, и тогда структура приближается к габбровой.
|
Рис. 1. Микроструктура породы метеорита. Pr - пироксен, Il - ильменит, Pl - плагиоклаз. Увеличение х80, николь. Фото А.И. Труфанова.
|
Следует отметить отсутствие акцессорных минералов, обычных для полнокристаллических земных пород, таких, как сфен, апатит, гранат, циркон. Из земных пород ближе всего к исследуемой породе метеорита является эвкритовое габбро.
Результаты спектрального анализа
Приближенно количественный спектральный анализ вещества метеорита был выполнен на спектрографе ДФС-8 в лаборатории химического и спектрального анализа института ВСЕГЕИ им. А.П.Карпинского. Результаты анализа приведены в таблице 1.
Таблица 1 |
Содержание элементов по результатам спектрального анализа |
|
|
|
|
|
|
? |
Элементы |
Содержание, |
? |
Элементы |
Содержание, |
п/п |
|
% масс. |
п/п |
|
1х10-4% (г/т) |
1 |
Si |
>10 |
14 |
V |
100 |
2 |
Mg |
>10 |
15 |
Zr |
80 |
3 |
Al |
8,0 |
16 |
Sc |
15 |
4 |
Fe |
5,0 |
17 |
Y |
15 |
5 |
Ca |
4,0 |
18 |
Yb |
1,2 |
6 |
Na |
2,5 |
19 |
Be |
0,80 |
7 |
Sr |
0,010 |
20 |
Sn |
2,5 |
8 |
Ba |
0,020 |
21 |
Pb |
15 |
9 |
Ti |
1,20 |
22 |
Zn |
300 |
10 |
Mn |
0,080 |
23 |
Ag |
0,04 |
11 |
Ni |
0,060 |
24 |
Ge |
2,0 |
12 |
Cr |
0,020 |
25 |
Ga |
15 |
13 |
Cu |
0,15 |
26 |
Co |
40 |
Анализ компонентного состава метеорита "Луженьга" был проведен рентгеновским спектрометром ARL 7200 S - интегрально. Вещество метеорита после предварительного измельчения в агатовой ступке впрессовывалось в связку по методике, используемой при исследовании металлургических шлаков. В качестве эталона также использовался образец известного состава шлаковой композиции, и по этой причине процентное содержание компонентов определено ориентировочно. Характерное рентгеновское излучение элементов исследуемого образца метеорита фиксировалось по 22 каналам регистрации прибора ARL 7200 S.
В таблице 2 приведено количественное содержание компонентов в исследуемом образце метеорита. Основных из них: (Si) - 40%, магний (Mg) - 19%, кальций (Ca) - 10%, содержания алюминия (Al), титана (Ti), хрома (Cr), калия (K), марганца (Mn) фиксируются, но из-за отсутствия эталона количественных оценок не производилось. Содержание натрия (Na) не определялось - не настроен канал измерений прибора. Содержание фосфора, ванадия, кобальта, никеля на уровне их концентрации в связке. Частицы никелистого железа, по-видимому, в пробу не попали, что привело к низкому сигналу на каналах прибора по Ni, Co. Содержания Cu, Zn, S, As, I, Nb, Zr, Mo, W при исследовании рентгеновским спектроскопом ARL 7200 S не проявляются.
Таблица 2 |
Результаты рентгеноспектральных исследований образца |
|
|
|
|
|
|
|
|
|
|
? |
Канал |
Импульсы |
% в |
? |
Канал |
Импульсы |
Проба |
п/п |
по |
Проба |
Связка |
пробе |
п/п |
по |
Проба |
Связка |
|
1 |
Si |
2004 |
103 |
40 |
8 |
K |
83 |
9 |
+ |
2 |
Mg |
58 |
3 |
19 |
9 |
Mn |
89 |
37 |
+ |
3 |
Fe |
2286 |
21 |
15 |
10 |
Co |
9 |
7 |
? |
4 |
Ca |
1444 |
231 |
10 |
11 |
Ni |
67 |
66 |
? |
5 |
Al |
191 |
9 |
+ |
12 |
V |
7 |
9 |
? |
6 |
Ti |
137 |
8 |
+ |
13 |
P |
5 |
6 |
? |
7 |
Cr |
121 |
28 |
+ |
|
|
|
|
|
Фазово-минералогический состав метеорита.
Фазовый состав вещества метеорита "Луженьга" изучали по методу дифракции X-Ray на дифрактометре ДРОН-3М производства АО УБуревестникФ г. Санкт-Петербурга. Получение дифрактограмм производилось на излучении Cu-αK в режиме: V=35 кВ, 1-30 mA, скорость вращения образца в ГУР-8 1 град./мин., скорость диаграммной ленты 720 мм/час с автоматической отметкой углов. Погрешность расчета значений межплоскостных расстояний при d≈10 Å не хуже 0,75%. Фазовый анализ был произведен также и на отдельно выделенных хондрах диаметром ≈1 мм. Рентгенограммы индивидуальной хондры получали по методу Debye в камере РКД-57 диаметром 57,3х10-3 м в излучении хрома без фильтра.
Образцы для исследования на ДРОН-3М готовили растиранием вещества метеорита в агатовой ступке до порошкообразного состояния. Пробы материала для получения порошковых дифрактограмм представляли:
- сколы первичных поверхностей образца в сплетении со сколами из внутренних областей метеорита, далее интегрированная проба;
- фракции отобранного материала образца - раздельно из темного и светлого вещества;
- вещества, обогащенного содержанием буро-коричневых пятен, расположенных на внешней первичной поверхности метеорита.
Следует отметить, что дифрактограммы исследуемого метеоритного вещества являются достаточно сложными для расшифровки по следующим причинам:
- большое число индивидуальных дифракционных рефлексов в угловом интервале по 2Θ (5њ -90њ), ≈100;
- слияние близких рефлексов на дифрактограмме от индивидуальных фаз в один экспериментальный недостаточно разрешаемый максимум - интервал (3,21 - 3,15 Å); (2,55 - 2,47 Å) и (2,145 - 2,10 Å);
- полное наложение отдельных рефлексов нескольких индивидуальных фаз в один экспериментальный;
- инверсия относительных интенсивностей групп, пар рефлексов на дифрактограммах от разных образцов - группы {3,21; 3,19; 3,175}, {2,98; 2,94; 2,88}, {2,55; 2,52; 2,50; 2.475}; пары - {3,89 и 3,86}, {3,75 и 3,72}, {3,50 и 3,75} и др.
При идентификации индивидуальных фаз использовались данные порошковой дифракционной картотеки [4] и автоматизированная система поиска на ПЭВМ [2].
На дифрактограммах вещества метеорита "Луженьга" отчетливо выявляются размытые дифракционные максимумы (гало), свидетельствующие о наличии в пробе аморфной фазы. Угловые интервалы гало по 2Θ в на дифрактограммах (≥7њ ÷ ≤ 10њ) с максимумом ≈8,5њ и (10њ÷ 17њ) с максимумом около 12њ. Наличие аморфной фазы в небольших количествах - Уплагиоклазовое стеклоФ (маскелинит) обнаруживалось и ранее во многих хондритах [3].
Результатами расчета дифрактограмм от кристаллических компонентов исследуемого метеоритного вещества являются многокомпонентные силикаты: оливин, пироксены, плагиоклаз и Уплагиоклазовое стеклоФ. Дифракционные рефлексы d = 6,35; 4,42; 4,02; 3,18÷ 3,15; 2,88; 2,50 и т. д. идентифицированы как принадлежащие минералам группы пироксенов: гиперстен, бронзит (0,47 Еn). Дифракционные рефлексы d = 5,13; 3,89; 2,77 и т. д. принадлежат минералам группы оливинов - A2+SiO4, где А2+ = Mg++, Fe++. В исследуемом образце в кристаллах оливина соотношение Mg/Fe находится в пределах (0,88/0,12÷0,90/ 0,10), т.е. состав диапазона Fo90-Fo85 (форстерит).
Плагиоклазы, по данным рентгеноструктурного исследования в пробах образца метеорита, имеют дифракционные рефлексы от d = 3,75; 3,63; 3,13; 2,83 Å до d = 6,38; 4,02; 3,20; 3,18 Å.
Вещество овоидов, по результатам рентгеноструктурных исследований, также является кристаллическим и представлено, главным образом, плагиоклазом и пироксенами.
Как уже отмечалось, дифрактограммы вещества метеорита свидетельствуют о наличии в нем "плагиоклазового стекла" - маскелинита. Дифрактограммы показывают также, что Уплагиоклазовое стеклоФ частично девитрифицировано - рефлексы: d = 9,90; 3,33; 4,74; 1,417 и т. д.
Дифрактограммы дивитрита были получены от вещества - первичных поверхностей, поверхностей свежего скола и т. д. Из анализа дифрактограмм следует, что степень дивитрификации и состав дивитрита, по видимому, имеют локальные вариации, о чем свидетельствуют изменение относительной интенсивности рефлексов d = 9,90; 4,74; 3,33 Å, а также значений величины d = 9,88-9,91 Å. Характер изменения относительной интенсивности рефлексов 4,74; 3,25 и особенно 1,417 на дифрактограммах от разных проб свидетельствует о проявлении в них структуры роста дивитрита при формировании его из "плагиоклазового стекла".
На дафрактограммах вещества материала с участков поверхности с пятнами буро-коричневого цвета были идентифицированы рефлексы, принадлежащие камаситу (Fe93Ni7) d = 2,03; 1,96 Å и новообразованиям - FeOOH. Последние свидетельствуют, что пятна буро-коричневого цвета на поверхности метеорита имеют вторичное (земное) происхождение как результат взаимодействия включений никелистого железа на открытой поверхности с атмосферой Земли в период от момента падения, до его обнаружения.
Обобщая результаты исследований вещества, метеорит можно отнести к группе LL в системе классификации 1967 [1]. По степени протекшего метаморфизма и на основании характеристик петрологических типов метеорит может быть отнесен к типам 3 либо 4. Таким образом, по буквенно-цифровой классификации метеорит "Луженьга" предварительно может рассматриваться как хондрит каменный, обыкновенный типа LL3 либо LL4.
Выводы:
- показано, что исследуемый образец имеет космическое (внеземное) происхождение и по месту находки - бассейн р. Луженьга ему присвоено имя "Луженьга";
- метеорит "Луженьга" классифицирован как хондрит каменный типа LL3 либо LL4;
- фазово-минералогический состав метеорита "Луженьга": оливин (форстерит), клинопироксен, ортопироксен (бронзит), ильменит, титанобиотит, "плагиоклазовое стекло", камасит;
- фазово-минералогический состав хондр метеорита "Луженьга": плагиоклаз и пироксен.
Литература:
1.Вуд Дж. Метеориты и происхождениесолнечной системы. М.. Мир, 1971, 173с.
2. Красушкин В.В.. Федорчук Н.М.. Шарапов А.А.. Ходан А.И. Пакет программ для обработки дифрактограмм и проведения фазового анализа на IBM PC XT/ АТ// III Международная конференция Прикладная рентгенография металлов. Тезисы докладов. Москва, МГИСиС (техн. ун-т), 1994, 50 с.
3. Минералогическая энциклопедия /Под ред. К.Фрея. М., Недра, 1985, 512с.
4. Powder diffraction file search Manual Inorganic, 1987 - JCPDS.
|