Peremennye Zvezdy

Peremennye Zvezdy (Variable Stars) 39, No. 2, 2019

Received 19 August; accepted 16 September.

Article in PDF

BVIc Observations of 64 Classical Cepheids

L. N. Berdnikov1, A. Yu. Kniazev1,2,3, A. K. Dambis1, V. V. Kravtsov1

  1. Sternberg Astronomical Institute, Moscow State University, Universitetskij pr. 13, Moscow 119234, Russia; berdnik@sai.msu.ru

  2. South Africa Astronomical Observatory, Cape Town, South Africa

  3. Southern African Large Telescope, Cape Town, South Africa


A total of 9128 B-, V-, and Ic-band photometric measurements were acquired for 64 classical Cepheids in 1982-2014. For these stars, 1384 times of maximum light are determined and O-C diagrams constructed based on available photoelectric and CCD observations. The data are used to compute the current ephemerides and the normalized Fourier coefficients (cosine expansion), whose analysis confirmed that all the 64 variables were correctly classified as classical Cepheids.

1. Introduction

High luminosities and reliable absolute-magnitude calibration make classical Cepheids highly important distance indicators. As rather young objects (no older than  years), they concentrate toward the Galactic plane and therefore serve as ideal tracers of the Galactic disk structure.

We showed in our recent paper (Berdnikov et al., 2014) CCD observations to be preferred over photoelectric photometry for determining Cepheid distances, because the former allow systematic observation errors to be reduced substantially. It therefore appears obvious that CCD observations should be performed for all Cepheids (or, at least, for the faint ones). In this paper, we report the results of such B-, V-, and Ic-band observations for 64 classical Cepheids and also present the results of our yet unpublished photoelectric observations of these Cepheids.

2. Observations

We carried out our CCD observations during 11 observing seasons in 2005-2014 (JD 2453483-56791) with the 76-cm telescope of the South African Astronomical Observatory (SAAO) in South Africa and with the 40-cm telescope of Observatorio Cerro Armazones of Universidad Catolica del Norte (OCA, Chile). We used a SBIG CCD ST-10XME camera equipped with Kron-Cousins filters (Cousins, 1976).

Photoelectric observations were carried out using a single-channel photometer mounted on the 60-cm telescope of Mount Maidanak Observatory in 1982 and 76-cm SAAO telescope in 1998-2008. A description of the technique of the reductions of photoelectric observations can be found in Berdnikov and Turner (2004).

When reducing CCD data, we first reduced the observations obtained using "all-sky" technique during photometric nights exclusively to obtain a catalog of positions and PSF magnitudes of all objects found on the best CCD frames. We then selected, from this catalog, the constant stars, which we used for differential photometry of all stars in all CCD frames including those acquired during non-photometric nights. For a complete description of the observation and reduction technique employed, see Berdnikov et al. (2011).

3. Results and Discussion

We acquired a total of 8225 CCD frames and 903 photoelectric measurements for 64 Cepheids. The results of our reductions are presented in Table 1 (its complete version is available in the file attached to the html version of this paper) and shown graphically in Figs. 1-4, where open and filled circles denote photoelectric and CCD observations, respectively. The scatter of data points in the plots shows that observational errors are close to 0.01.

Small changes of Cepheid periods, which have practically no effect on their computed distances, are often conspicuous even on short time scales of several years (Berdnikov, 1994; Berdnikov & Pastukhova, 1994ab,1995); as a result, for most of the Cepheids the times of maximum light deviate appreciably from the zero-phase times given by published light elements (ephemerides) of most of the Cepheids including those reported in recent catalogs. That is why, for plots in Figs. 1-4, we used the current light elements from Table 2, which we determined based on the times of maximum light computed using the Hertzsprung (1919) method whose computer implementation is described in Berdnikov (1982). We determined the current light elements from an analysis of - and -band observations from this paper combined with published photoelectric and CCD observations including the data acquired in Hipparcos (ESA, 1997), ASAS-3 (Pojmanski, 2002), ASAS-SN (Yayasinghe et al., 2018), and INTEGRAL-OMC (Alfonso-Garcon et al., 2012). All light elements in Table 2 refer to the -band filter.

Fig. 1. Light curves of the Cepheids T Ant, V733 Aql, V1803 Aql, V922 Ara, V384 CMa, V434 CMa, II Car, V656 Car, V690 Car, V708 Car, V850 Car, V854 Car, V1253 Cen, V1372 Cen, V1384 Cen, and EV Cir.

Fig. 2. Light curves of the Cepheids FL Cir, FQ Cru, V508 Mon, V510 Mon, V911 Mon, V981 Mon, V397 Nor, V539 Nor, V620 Pup, V622 Pup, V729 Pup, V730 Pup, V731 Pup, DX Pyx, V367 Sge, V5567 Sgr, and V5738 Sgr.

Fig. 3. Light curves of the Cepheids V636 Sco, V1622 Sco, V412 Ser, V1256 Tau, V520 Vel, V527 Vel, V530 Vel, V532 Vel, V536 Vel, V537 Vel, ASAS 052610+1151.3, ASAS 062939-1840.5, ASAS 064001-0754.8, ASAS 071705-2849.4, ASAS 071850-3238.7, and ASAS 073113-2811.0.

Fig. 4. Light curves of the Cepheids ASAS 073453-2651.3, ASAS 073502-3554.9, ASAS 074925-3814.4, ASAS 075840-3330.2, ASAS 082117-3845.3, ASAS 082127-3825.3, ASAS 083130-4429.3, ASAS 084127-4353.6, ASAS 091933-5137.4, ASAS 094809+0000.1, ASAS 115701-6218.7, ASAS 140742-6315.4, ASAS 165857-4312.3, ASAS 182714-1507.1, and ASAS 193206+1132.9.

Figures 5-7 show the O-C diagrams for all the 64 Cepheids. These diagrams can be used to determine the corrections to the ephemerides from Table 2 and, in particular, compute the phases of spectroscopic observations of Cepheids or when determining the velocity from a single velocity measurement.

Fig. 5. The O-C diagrams for T Ant, V733 Aql, V1803 Aql, V922 Ara, V384 CMa, V434 CMa, II Car, V656 Car, V690 Car, V708 Car, V850 Car, V854 Car, V1253 Cen, V1372 Cen, V1384 Cen, EV Cir, FL Cir, FQ Cru, V508 Mon, V510 Mon, V911 Mon, V981 Mon, V397 Nor, V539 Nor, V620 Pup, V622 Pup, and V729 Pup.

Fig. 6. The O-C diagrams for V731 Pup, DX Pyx, V367 Sge, V5567 Sgr, V5738 Sgr, V636 Sco, V1622 Sco, V412 Ser, V1256 Tau, V520 Vel, V527 Vel, V530 Vel, V532 Vel, V536 Vel, V537 Vel, ASAS 052610+1151.3, ASAS 062939-1840.5, ASAS 064001-0754.8, ASAS 071705-2849.4, ASAS 071850-3238.7, ASAS 073113-2811.0, ASAS 073453-2651.3, ASAS 073502-3554.9, ASAS 074925-3814.4, ASAS 075840-3330.2, and ASAS 082117-3845.3.

Fig. 7. The O-C diagrams for ASAS 082127-3825.3, ASAS 083130-4429.3, ASAS 084127-4353.6, ASAS 091933-5137.4, ASAS 094809+0000.1, ASAS 115701-6218.7, ASAS 140742-6315.4, ASAS 165857-4312.3, ASAS 182714-1507.1, and ASAS 193206+1132.9.

Table 3 lists the normalized Fourier coefficients (cosine expansion) (Petersen 1986) for Cepheid light curves, and in Fig. 8, we plot as a function of period for the 547 Cepheids that we observed; the circles show the data from Table 3.

Fig. 8. The period- diagram for classical Cepheids. The open circles show the data from Table 3.

4. Conclusions

(1) A total of 9128 magnitude measurements were made for 64 Cepheids in 1982-2014 in the B-, V-, and Ic-band filters.

(2) We analyzed our data combined with all published photoelectric and CCD observations of these Cepheids using the Hertzsprung method and constructed the O-C diagrams based on 1384 times of maximum light. These diagrams can be used to compute the corrections to ephemerides in Table 2, e.g., in order to determine the phases of spectroscopic observations of Cepheids or when determining the  velocity from a single radial-velocity measurement for a Cepheid.

(3) We fitted the light curves of 64 Cepheids by Fourier series (cosine expansion) and computed the corresponding normalized Fourier coefficients R_21, R_31, R_41, phi_21, phi_31, and phi_41. The plot of vs. period is used to validate the classification of a variable as a classical Cepheid. Figure 8 shows such a plot for the 547 Cepheids that we observed earlier. Here the positions of the circles, which correspond to the data from Table 3, corroborate the correctness of the classification of the 64 Cepheids.

We will use our new data to study the structure and kinematics of the Galactic disk and the properties of the Cepheids, in particular, to search for evolutionary changes of their periods.


Acknowledgements: This work was supported by the Russian Foundation for Basic Research (projects Nos. 18-02-00890 and 19-02-00611).


Table 1: Photometric observations of Cepheids
HJD
2400000+
Filter
 
Magnitude
 
HJD
2400000+
Filter
 
Magnitude
 
HJD
2400000+
Filter
 
Magnitude
 
T Ant
51248.4724 B 10.487 51248.4724 V 9.638 51248.4724 Ic 8.732
51249.3539 B 9.383 51249.3539 V 8.894 51249.3539 Ic 8.287
51249.4128 B 9.360 51249.4128 V 8.867 51249.4128 Ic 8.261
51250.3115 B 9.705 51250.3115 V 9.084 51250.3115 Ic 8.353
51251.3119 B 10.085 51251.3119 V 9.320 51251.3119 Ic 8.475
51251.4307 B 10.115 51251.4307 V 9.340 51251.4307 Ic 8.495
51252.3111 B 10.320 51252.3111 V 9.491 51252.3111 Ic 8.577
51252.4725 B 10.379 51252.4725 V 9.526 51252.4725 Ic 8.612
51253.3039 B 10.581 51253.3039 V 9.680 51253.3039 Ic 8.734
51253.4425 B 10.604 51253.4425 V 9.694 51253.4425 Ic 8.745
51254.3556 B 10.467 51254.3556 V 9.649 51254.3556 Ic 8.756
51254.4321 B 10.404 51254.4321 V 9.599 51254.4321 Ic 8.721
51255.2894 B 9.368 51255.2894 V 8.876 51255.2894 Ic 8.272
51255.3876 B 9.363 51255.3876 V 8.872 51255.3876 Ic 8.272
51256.2955 B 9.715 51256.2955 V 9.075 51256.2955 Ic 8.343
51256.4213 B 9.768 51256.4213 V 9.119 51256.4213 Ic 8.356
51258.3243 B 10.324 51258.3243 V 9.498 51258.3243 Ic 8.591
51258.3704 B 10.381 51258.3704 V 9.536 51258.3704 Ic 8.620
51259.3288 B 10.588 51259.3288 V 9.686 51259.3288 Ic 8.725
51260.2600 B 10.474 51260.2600 V 9.651 51260.2600 Ic 8.751
51260.3590 B 10.383 51260.3590 V 9.591 51260.3590 Ic 8.724
51275.2864 B 10.174 51275.2864 V 9.391 51275.2864 Ic 8.502
51276.3338 B 10.461 51276.3338 V 9.583 51276.3338 Ic 8.643
51276.3688 B 10.489 51276.3688 V 9.591 51276.3688 Ic 8.657
51279.2395 B 9.448 51279.2395 V 8.920 51279.2395 Ic 8.283
51279.3080 B 9.503 51279.3080 V 8.969 51279.3080 Ic 8.309
51279.3458 B 9.523 51279.3458 V 8.979 51279.3458 Ic 8.315
51280.2397 B 9.862 51280.2397 V 9.169 51280.2397 Ic 8.390
51280.2962 B 9.895 51280.2962 V 9.198 51280.2962 Ic 8.404
51280.3493 B 9.910 51280.3493 V 9.200 51280.3493 Ic 8.405
51281.2456 B 10.150 51281.2456 V 9.361 51281.2456 Ic 8.494
51281.2706 B 10.164 51281.2706 V 9.373 51281.2706 Ic 8.490
51281.3119 B 10.175 51281.3119 V 9.385 51281.3119 Ic 8.514
51281.3484 B 10.191 51281.3484 V 9.395 51281.3484 Ic 8.510
51282.2617 B 10.497 51282.2617 V 9.604 51282.2617 Ic 8.683
51282.3621 B 10.475 51282.3621 V 9.603 51282.3621 Ic 8.663
51284.2644 B 9.919 51284.2644 V 9.279 51284.2644 Ic 8.504
51286.2524 B 9.906 51286.2524 V 9.210 51286.2524 Ic 8.411
51286.3255 B 9.940 51286.3255 V 9.232 51286.3255 Ic 8.416

Table 2: Ephemerides of Cepheid light variations
Cepheid
 
Right ascension
h  m  s
Declination
Initial epoch
HJD
Period
days
T Ant 09 33 50.86 -36 36 56.7 2454157.3370 ± 0.0020 5.89836670 ± 0.00000796
V733 Aql 19 57 33.02 +11 02 37.2 2454812.6897 ± 0.0060 6.17876776 ± 0.00003047
V1803 Aql 19 20 06.94 +12 47 42.9 2454467.0241 ± 0.0071 8.62834987 ± 0.00005543
V922 Ara 16 41 20.04 -47 39 38.8 2454433.6164 ± 0.0171 13.01791882 ± 0.00015462
V384 CMa 07 03 55.07 -17 52 47.7 2454160.4594 ± 0.0069 4.20597866 ± 0.00002373
V434 CMa 07 13 42.42 -17 37 13.0 2454261.7573 ± 0.0078 7.51172944 ± 0.00004879
II Car 10 48 49.12 -60 03 47.2 2455758.9580 ± 0.0519 64.65113243 ± 0.00386174
V656 Car 10 36 27.07 -62 11 33.0 2454383.2567 ± 0.0229 24.22633478 ± 0.00045283
V690 Car 09 48 26.80 -58 01 05.5 2454237.3035 ± 0.0040 4.15056019 ± 0.00001637
V708 Car 10 15 37.88 -59 33 04.6 2455529.2793 ± 0.0432 51.37631049 ± 0.00249981
V850 Car 09 48 19.86 -57 48 37.7 2454367.7668 ± 0.0055 5.21712047 ± 0.00002542
V854 Car 10 10 36.82 -58 17 46.8 2454273.0349 ± 0.0049 5.07068718 ± 0.00002331
V1253 Cen 12 38 03.82 -38 31 24.6 2454758.5718 ± 0.0048 4.32098155 ± 0.00002190
V1372 Cen 11 20 39.12 -61 49 52.5 2454553.7016 ± 0.0100 13.36877922 ± 0.00009933
V1384 Cen 13 14 00.18 -62 29 54.4 2454335.5631 ± 0.0228 6.37904808 ± 0.00013139
EV Cir 15 05 46.47 -58 22 55.1 2454090.0874 ± 0.0141 16.70159336 ± 0.00021275
FL Cir 15 20 21.31 -58 07 20.1 2454399.2584 ± 0.0164 10.51851030 ± 0.00012643
FQ Cru 12 22 40.16 -62 09 35.8 2454300.9987 ± 0.0110 13.77676524 ± 0.00015479
V508 Mon 06 47 09.40 +03 58 01.6 2449999.3585 ± 0.0039 4.13363963 ± 0.00000301
V510 Mon 06 47 26.90 +02 31 00.8 2454739.0842 ± 0.0474 7.45748754 ± 0.00025720
V911 Mon 06 40 37.56 +11 43 38.9 2454484.9367 ± 0.0135 4.97820496 ± 0.00005795
V981 Mon 06 48 29.18 -10 14 17.6 2454369.2157 ± 0.0047 4.51439309 ± 0.00001809
V397 Nor 16 15 55.55 -51 07 14.7 2454205.4750 ± 0.0054 6.81274252 ± 0.00002788
V539 Nor 16 20 54.23 -53 33 16.5 2455311.9580 ± 0.0038 2.64360940 ± 0.00001248
V620 Pup 07 57 49.89 -29 23 02.6 2454702.2680 ± 0.0055 2.58609332 ± 0.00001343
V622 Pup 07 59 12.20 -26 41 56.0 2454986.5635 ± 0.0047 3.71650952 ± 0.00001856
V729 Pup 08 05 11.03 -34 21 36.9 2454586.1485 ± 0.0043 4.08870325 ± 0.00001781
V730 Pup 08 10 24.78 -38 28 25.4 2454162.6137 ± 0.0047 3.57897053 ± 0.00001414
V731 Pup 08 10 25.88 -32 31 16.9 2454884.7901 ± 0.0081 5.46478167 ± 0.00004784
DX Pyx 08 34 26.07 -35 59 06.6 2454127.8063 ± 0.0031 3.73723995 ± 0.00000962
V367 Sge 19 19 53.15 +17 14 25.6 2454567.5289 ± 0.0079 4.84260751 ± 0.00003589
V5567 Sgr 18 21 05.53 -18 27 19.6 2454730.6752 ± 0.0073 9.76281790 ± 0.00008112
V5738 Sgr 18 03 41.74 -22 10 58.5 2454449.1257 ± 0.0994 42.61937034 ± 0.00265430
V636 Sco 17 22 46.48 -45 36 51.4 2451402.7145 ± 0.0036 6.79699218 ± 0.00001440
V1622 Sco 17 32 53.11 -35 54 41.1 2454104.4122 ± 0.0061 8.44676116 ± 0.00004669
V412 Ser 18 14 15.82 -09 20 20.7 2455145.7686 ± 0.0029 5.12173266 ± 0.00002188
V1256 Tau 05 27 06.50 +16 56 11.1 2454665.1351 ± 0.0050 4.43855466 ± 0.00001889
V520 Vel 08 36 11.36 -39 03 42.5 2455197.0944 ± 0.0060 12.95873402 ± 0.00009012
V527 Vel 09 04 35.72 -46 33 13.1 2454349.9543 ± 0.0168 6.62826288 ± 0.00008789
V530 Vel 09 09 32.02 -53 59 15.8 2454288.0318 ± 0.0026 3.59055812 ± 0.00000908
V532 Vel 09 22 49.81 -51 51 38.7 2454340.9247 ± 0.0231 11.20753666 ± 0.00022781
V536 Vel 09 27 57.81 -52 18 58.4 2453485.8813 ± 0.0160 7.64343628 ± 0.00014805
V537 Vel 09 30 05.09 -51 37 25.1 2454332.0850 ± 0.0022 3.36803616 ± 0.00000526
ASAS052610+1151.3 05 26 09.63 +11 51 13.2 2454537.9037 ± 0.0030 4.23199632 ± 0.00001068
ASAS062939-1840.5 06 29 39.22 -18 40 26.7 2455034.3158 ± 0.0258 16.94052234 ± 0.00060080
ASAS064001-0754.8 06 40 01.19 -07 54 51.0 2454297.0457 ± 0.0036 1.60386979 ± 0.00000444
ASAS071705-2849.4 07 17 04.69 -28 49 24.7 2454222.4823 ± 0.0093 3.96997244 ± 0.00003094
ASAS071850-3238.7 07 18 50.62 -32 38 38.4 2455005.9658 ± 0.0038 1.16324185 ± 0.00000544
ASAS073113-2811.0 07 31 12.11 -28 10 58.5 2455505.0251 ± 0.0081 4.71128567 ± 0.00005391
ASAS073453-2651.3 07 34 53.40 -26 51 20.9 2454292.7123 ± 0.0073 3.55246978 ± 0.00001866
ASAS073502-3554.9 07 35 02.07 -35 54 46.8 2454805.9108 ± 0.0034 4.24359673 ± 0.00001533
ASAS074925-3814.4 07 49 25.25 -38 14 21.7 2454210.0353 ± 0.0033 10.50339556 ± 0.00002713
ASAS075840-3330.2 07 58 39.87 -33 30 14.6 2454161.1972 ± 0.0052 4.40296963 ± 0.00001853
ASAS082117-3845.3 08 21 16.82 -38 45 15.7 2454874.2838 ± 0.0063 5.03039779 ± 0.00003488
ASAS082127-3825.3 08 21 26.61 -38 25 18.2 2454122.3090 ± 0.0050 3.96115588 ± 0.00001652
ASAS083130-4429.3 08 31 30.22 -44 29 17.7 2455257.6189 ± 0.0068 4.21817714 ± 0.00003716
ASAS084127-4353.6 08 41 26.86 -43 53 34.5 2455311.5259 ± 0.0216 25.36450082 ± 0.00085200
ASAS091933-5137.4 09 19 32.18 -51 37 13.6 2455139.1434 ± 0.0034 3.35494562 ± 0.00001418
ASAS094809+0000.1 09 48 09.43 +00 00 08.2 2454471.1556 ± 0.0011 0.83391125 ± 0.00000083
ASAS115701-6218.7 11 57 00.51 -62 18 42.5 2454793.8982 ± 0.0179 26.52275125 ± 0.00098763
ASAS140742-6315.4 14 07 42.01 -63 15 15.6 2454426.1237 ± 0.0101 7.79738700 ± 0.00006029
ASAS165857-4312.3 16 58 57.07 -43 12 19.2 2455085.8650 ± 0.0120 10.99158402 ± 0.00010540
ASAS182714-1507.1 18 27 13.44 -15 07 04.5 2454125.6351 ± 0.0080 5.54569029 ± 0.00003579
ASAS193206+1132.9 19 32 04.73 +11 32 59.2 2455792.4759 ± 0.0072 6.69752564 ± 0.00005874

Table 3: Normalized Fourier coefficients (cosine expansion)
Cepheid Period R_21 R_31 R_41
    Error Error Error Error Error Error
T Ant 5.89837 0.43466 0.17856 0.09721 3.02859 5.93388 2.67123
    0.00256 0.00256 0.00256 0.00779 0.01624 0.02820
V733 Aql 6.17877 0.28866 0.05211 0.02262 3.00693 5.08899 5.69551
    0.00170 0.00170 0.00170 0.00681 0.03307 0.07558
V1803 Aql 8.62840 0.18317 0.06604 0.04292 4.24798 1.07380 2.66997
    0.00331 0.00331 0.00331 0.01923 0.05107 0.07821
V922 Ara 13.01802 0.15645 0.10984 0.09845 2.52184 3.98195 0.39758
    0.00612 0.00612 0.00612 0.04101 0.05869 0.06684
V384 CMa 4.20598 0.35630 0.13467 0.03284 2.83002 5.65080 3.08131
    0.00002 0.00002 0.00002 0.00006 0.00014 0.00055
V434 CMa 7.51176 0.27270 0.10845 0.08889 3.55704 0.35793 2.02948
    0.00250 0.00250 0.00250 0.01045 0.02425 0.02986
II Car 64.65113 0.39070 0.14702 0.05357 3.32189 0.26629 3.50931
    0.00033 0.00033 0.00033 0.00106 0.00242 0.00621
V656 Car 24.22676 0.33927 0.19363 0.13982 2.99339 5.58062 2.17902
    0.01126 0.01126 0.01126 0.04011 0.06725 0.09227
V690 Car 4.15057 0.33433 0.12346 0.01395 2.70648 5.49845 2.73730
    0.00082 0.00082 0.00082 0.00297 0.00712 0.05918
V708 Car 51.37631 0.31891 0.11208 0.04079 3.27095 0.39554 3.69158
    0.00126 0.00126 0.00126 0.00469 0.01188 0.03134
V850 Car 5.21710 0.26549 0.09964 0.00496 2.76531 5.88181 4.45445
    0.00002 0.00002 0.00002 0.00007 0.00016 0.00316
V854 Car 5.07068 0.36302 0.11271 0.04136 2.73992 5.69162 2.04094
    0.00179 0.00179 0.00179 0.00610 0.01677 0.04388
V1253 Cen 4.32099 0.40937 0.17705 0.09150 2.77162 5.48196 2.19516
    0.00095 0.00095 0.00095 0.00301 0.00611 0.01111
V1372 Cen 13.36880 0.12488 0.12718 0.12751 2.41633 3.81192 0.51562
    0.00806 0.00806 0.00806 0.06653 0.06784 0.07097
V1384 Cen 6.37921 0.21906 0.01352 0.00002 2.83492 5.48606 5.02852
    0.00002 0.00002 0.00002 0.00009 0.00129 0.91299
EV Cir 16.70155 0.30223 0.19015 0.13056 2.69490 5.21295 1.62879
    0.00889 0.00889 0.00889 0.03435 0.05380 0.07678
FL Cir 10.51847 0.05036 0.06198 0.03101 0.88861 2.71348 0.24531
    0.00023 0.00023 0.00023 0.00465 0.00383 0.00758
FQ Cru 13.77710 0.22282 0.12695 0.13161 2.88705 4.50576 0.77853
    0.01115 0.01115 0.01115 0.05479 0.09400 0.09576
V508 Mon 4.13364 0.33862 0.12438 0.02167 2.70730 5.46179 1.77991
    0.00061 0.00061 0.00061 0.00219 0.00527 0.02845
V510 Mon 7.45749 0.26443 0.04804 0.06271 3.52735 5.32972 1.22577
    0.00057 0.00057 0.00057 0.00243 0.01193 0.00933
V911 Mon 4.97819 0.35405 0.09303 0.00002 2.83242 5.65007 1.12892
    0.00002 0.00002 0.00002 0.00006 0.00020 1.11889
V981 Mon 4.51439 0.46651 0.24670 0.11577 2.80891 5.75995 2.37802
    0.00362 0.00362 0.00362 0.01062 0.01826 0.03447
V397 Nor 6.81267 0.25535 0.07101 0.01170 3.15503 5.38820 6.25672
    0.00051 0.00051 0.00051 0.00226 0.00739 0.04391
V539 Nor 2.64342 0.27244 0.10450 0.02401 3.09057 5.97416 2.35483
    0.00001 0.00001 0.00001 0.00006 0.00014 0.00060
V620 Pup 2.58611 0.37153 0.12382 0.03992 2.52797 5.34839 1.21653
    0.00183 0.00183 0.00183 0.00615 0.01579 0.04649
V622 Pup 3.71652 0.34098 0.14672 0.05206 2.59010 5.05446 1.23582
    0.00001 0.00001 0.00001 0.00005 0.00011 0.00028
V729 Pup 4.08867 0.34464 0.12141 0.04024 2.82168 5.64332 2.93519
    0.00030 0.00030 0.00030 0.00107 0.00266 0.00765
V730 Pup 3.57896 0.35507 0.15501 0.07422 2.73734 5.49882 1.77879
    0.00262 0.00262 0.00262 0.00906 0.01867 0.03688
V731 Pup 5.46481 0.32944 0.09914 0.05335 2.85359 6.00515 2.43213
    0.00104 0.00104 0.00104 0.00379 0.01098 0.02000
DX Pyx 3.73724 0.38182 0.15831 0.06815 2.62392 5.40340 1.92246
    0.00252 0.00252 0.00252 0.00829 0.01759 0.03825
V367 Sge 4.84262 0.41567 0.16115 0.03056 2.92912 5.92214 1.91637
    0.00001 0.00001 0.00001 0.00003 0.00007 0.00034
V5567 Sgr 9.76278 0.18850 0.10866 0.07983 4.03515 0.87648 2.51650
    0.00365 0.00365 0.00365 0.02070 0.03534 0.04800
V5738 Sgr 42.61349 0.35614 0.14451 0.06729 2.69506 5.49527 2.00308
    0.00268 0.00268 0.00268 0.00924 0.02021 0.04124
V636 Sco 6.79699 0.30404 0.05360 0.01693 3.19879 5.72969 6.08239
    0.00124 0.00124 0.00124 0.00476 0.02337 0.07320
V1622 Sco 8.44680 0.23312 0.14013 0.09002 3.71060 0.77894 2.32352
    0.00386 0.00386 0.00386 0.01827 0.02988 0.04558
V412 Ser 5.12172 0.32632 0.13335 0.03898 2.85167 5.76317 1.93589
    0.00001 0.00001 0.00001 0.00003 0.00007 0.00022
V1256 Tau 4.43857 0.36412 0.16508 0.07751 2.73907 5.68386 1.96398
    0.00265 0.00265 0.00265 0.00900 0.01790 0.03577
V520 Vel 12.95930 0.17481 0.09862 0.07629 2.50316 3.33784 4.98075
    0.00314 0.00314 0.00314 0.01901 0.03317 0.04299
V527 Vel 6.62817 0.35218 0.10226 0.02575 3.30419 6.20784 5.00996
    0.00063 0.00063 0.00063 0.00219 0.00645 0.02460
V530 Vel 3.59059 0.36468 0.08753 0.01715 2.76352 5.52861 0.46646
    0.00269 0.00269 0.00269 0.00912 0.03175 0.15708
V532 Vel 11.20749 0.19003 0.06026 0.02692 2.56248 4.06213 5.44797
    0.00080 0.00080 0.00080 0.00449 0.01344 0.02977
V536 Vel 7.64343 0.33728 0.13042 0.06836 3.60475 6.23821 0.97791
    0.00150 0.00150 0.00150 0.00535 0.01233 0.02270
V537 Vel 3.36803 0.35853 0.14937 0.09061 2.64673 5.32839 1.66540
    0.00352 0.00352 0.00352 0.01208 0.02583 0.04133
ASAS 052610+1151.3 4.23200 0.38097 0.14721 0.05489 2.81627 5.73339 2.26705
    0.00090 0.00090 0.00090 0.00297 0.00668 0.01678
ASAS 062939-1840.5 16.94061 0.17584 0.12666 0.14309 2.90862 4.57736 1.17694
    0.00978 0.00978 0.00978 0.05897 0.08262 0.07877
ASAS 064001-0754.8 1.60386 0.18954 0.00001 0.00002 2.60592 3.92781 0.28421
    0.00002 0.00002 0.00002 0.00009 1.40503 0.78809
ASAS 071705-2849.4 3.96998 0.26442 0.07491 0.02350 2.77116 5.42853 3.70762
    0.00085 0.00085 0.00085 0.00362 0.01158 0.03617
ASAS 071850-3238.7 1.16324 0.26378 0.07441 0.02905 2.34076 5.08130 0.40225
    0.00086 0.00086 0.00086 0.00368 0.01181 0.02971
ASAS 073113-2811.0 4.71130 0.34164 0.11486 0.05832 2.67541 5.41323 1.55280
    0.00100 0.00100 0.00100 0.00355 0.00922 0.01762
ASAS 073453-2651.3 3.55246 0.39797 0.15488 0.05604 2.73927 5.53746 2.09260
    0.00172 0.00172 0.00172 0.00552 0.01224 0.03143
ASAS 073502-3554.9 4.24359 0.31245 0.18085 0.05802 2.75262 5.81921 2.79011
    0.00089 0.00089 0.00089 0.00336 0.00560 0.01576
ASAS 074925-3814.4 10.50338 0.21831 0.11639 0.15787 3.15016 4.63562 1.12799
    0.01142 0.01142 0.01142 0.05709 0.10394 0.08556
ASAS 075840-3330.2 4.40295 0.37593 0.13292 0.05738 2.86139 5.47616 1.34509
    0.00001 0.00001 0.00001 0.00004 0.00009 0.00020
ASAS 082117-3845.3 5.03030 0.40140 0.15192 0.04111 2.92431 5.89859 2.81249
    0.00123 0.00123 0.00123 0.00392 0.00888 0.03026
ASAS 082127-3825.3 3.96115 0.34009 0.14422 0.06632 2.67464 5.45142 2.18184
    0.00208 0.00208 0.00208 0.00738 0.01569 0.03240
ASAS 083130-4429.3 4.21809 0.24829 0.06951 0.02369 2.63446 5.25950 4.46774
    0.00163 0.00163 0.00163 0.00733 0.02395 0.06909
ASAS 084127-4353.6 25.36446 0.36384 0.25604 0.19245 2.78559 5.43950 2.07293
    0.01060 0.01060 0.01060 0.03603 0.05221 0.06951
ASAS 091933-5137.4 3.35495 0.40927 0.20327 0.10319 2.62148 5.25363 1.53919
    0.00603 0.00603 0.00603 0.01906 0.03477 0.06327
ASAS 094809+0000.1 0.83391 0.37686 0.15392 0.06393 2.73443 5.79240 2.70284
    0.00105 0.00105 0.00105 0.00349 0.00751 0.01695
ASAS 115701-6218.7 26.52275 0.34927 0.20868 0.16297 2.86669 5.45840 1.97179
    0.01114 0.01114 0.01114 0.03891 0.06299 0.08160
ASAS 140742-6315.4 7.79737 0.25445 0.11804 0.06596 3.40520 6.07425 0.95556
    0.00217 0.00217 0.00217 0.00957 0.01951 0.03404
ASAS 165857-4312.3 10.99179 0.17804 0.12013 0.04372 4.44211 2.08225 4.83661
    0.00199 0.00199 0.00199 0.01187 0.01762 0.04625
ASAS 182714-1507.1 5.54570 0.32296 0.12180 0.03777 2.82010 5.61583 1.85331
    0.00001 0.00001 0.00001 0.00004 0.00009 0.00027
ASAS 193206+1132.9 6.69762 0.33599 0.03866 0.00003 3.08309 6.21039 3.14578
    0.00001 0.00001 0.00001 0.00004 0.00030 0.35783

References:

Alfonso-Garzon, J., Domingo, A., Mas-Hesse, J.M., Gimenez, A., 2012, Astron & Astrophys., 548, A79

Berdnikov, L.N., 1992, Pisma Astron. Zh., 18, 519

Berdnikov, L.N., 1994, Astron. Lett., 20, 232

Berdnikov, L.N., Kniazev, A.Yu., Kravtsov, V.V., Pastukhova, E.N., Turner, D.G. 2009, Astron. Lett., 35, 39

Berdnikov, L.N., Kniazev, A.Yu., Sefako, R. , Kravtsov, V.V., Pastukhova, E.N., Zhuiko, S.V., 2011, Astron. Rep., 55, 816

Berdnikov, L.N., Kniazev, A.Yu., Sefako, R. , Kravtsov, V.V., Zhuiko, S.V., 2014, Astron. Lett., 40, 125

Berdnikov, L.N., Pastukhova, E.N., 1994a, Astron. Lett, 20, 479

Berdnikov, L.N., Pastukhova, E.N., 1994b, Astron. Lett, 20, 829

Berdnikov, L.N., Pastukhova, E.N., 1995, Astron. Lett, 21, 369

Berdnikov, L.N., Turner, D.G., 2004, Astron. Astrophys. Trans., 23, 252

Hertzsprung, E., 1919, Astron. Nachr., 210, 17

ESA, The Hipparcos and Tycho catalogues, ESA SP-1200 (Noordwijk: ESA, 1997)

Cousins, A.W.J., 1976, Mem. RAS, 81, 25

Petersen, J.O., 1986, Astron. Astrophys., 170, 59

Pojmanski, G., 2002, Acta Astron., 52, 397

Jayasinghe, T., Stanek, K.Z., Kochanek, C.S., et al., 2018, 2018arXiv180907329





Main Page | Search
Astronet | SAI | INASAN

Report problems