Астронет: Д. А. Варшалович, "Физика Космоса", 1986 Ориентация спинов (в космической среде) http://variable-stars.ru/db/msg/1188514 |
Ориентация спинов (в космической среде)
Атомы, молекулы, ионы, электроны и фотоны обладают определённым спином, т.е. внутренним (вращательным) моментом количества движения. Обычно состояние частиц в различных космич. объектах, напр. в атмосферах звёзд или в туманностях, характеризуют их концентрацией, распределением по скоростям, степенью ионизации, возбуждения и не рассматривают, как правило, их спиновое состояние. Предполагается, что спины распределены хаотически и ни на что не влияют. Однако это предположение не всегда оправдано. В ряде случаев О. с. существенно влияет на физ. свойства космич. объектов, в частности космич. среды.
Рис. 1. Возможные значения проекции M спина частицы в магнитном поле (квантование проекции спина). Ось квантования - направление магнитного поля. |
В разреженной среде, находящейся в тепловом (термодинамическом) равновесии, при отсутствии внеш. полей все направления равноправны (среда изотропна). Спины частиц в такой среде расположены хаотически, так что в среднем ориентация у них отсутствует. Однако О. с. возможна, если частица обладает магн. моментом и имеется достаточно сильное внешнее магн. поле H, такое, что энергия взаимодействия его с моментом частицы больше или сравнима с энергией теплового движения частицы. Спины частиц в этом случае могут быть ориентированы по полю H (или против поля). Такая ориентация наз. статической. В действительности энергетич. условие, необходимое для статич. О. с., в известных космич. объектах не выполняется. Напр., в межзвёздной среде при Н ~ 10-6 Э и Т ~ 100 К энергия магн. взаимодействия эрг, а энергия теплового движения kT ~ 10-14 эрг. Даже в магнитных звёздах при Н ~ 103 Э и T ~ 104 К энергия эрг, a kT ~ 10-12 эрг. Поэтому статич. О. с. частиц, связанная с наличием сильных внеш. полей, в космич. условиях не имеет места.
При отсутствии теплового равновесия возможен принципиально иной тип ориентации, т.е. динамическая ориентация, при к-рой спины частиц среды ориентируются в результате их взаимодействия с проходящим через среду направленным потоком излучения или потоком быстрых частиц. Так, оптич. излучение и радиоизлучение звёзд и туманностей, а также направленные корпускулярные потоки, проходя через межзвёздную среду, и взаимодействуя с ней, не только меняют распределение частиц по импульсам, но и ориентируют спины зтих частиц.
Динамич. ориентация спинов неразрывно связана с такими явлениями, как давление излучения и солнечный ветер, т.к. при столкновении с фотоном или частицей солнечного ветра атому (или др. частице) одновременно передаются и импульс, и момент импульса. Второй процесс даже более эффективен в том смысле, что налетающий поток сначала ориентирует частицы среды, а уж затем увлекает их в направлении своего распространения.
Анализ физ. условий в различных космич. объектах показывает, что при динамич. ориентации спины оказываются выстроенными, а не поляризованными, и осн. механизмом такого выстраивания явл. резонансное рассеяние направленного неполяризованного излучения (излучения в спектральных линиях). При резонансном рассеянии атомы и молекулы очень эффективно взаимодействуют с фотонами, велико т.н. эффективное сечение рассеяния.
Механизм оптич. резонансной ориентации наглядно раскрывается на примере двухуровневого атома со спином J = 1 в осн. состоянии и со спином J' = О в возбуждённом состоянии (рис. 2).
Рис. 2. Схема, иллюстрирующая механизм оптической ориентации спинов. Здесь J = 1 и J' = 0 - спин частицы соответственно в основном и возбуждённом состоянии, M - проекция спина на направление пучка падающих фотонов. |
Оптич. св-ва (преломление и поглощение) среды, содержащей частицы с выстроенными спинами, существенно зависят от поляризации пронизывающего среду пучка света или частиц и направления наблюдения. Первоначально неполяризованное излучение, проходя через "выстроенную" среду, линейно поляризуется вследствие того, что прозрачность среды для излучения, поляризованного параллельно и перпендикулярно магн. полю, неодинакова. Это явление необходимо принимать во внимание при анализе спектров различных космич. объектов. Так, выстраивание приведёт к поляризации проходящего света и к аномальному отношению интенсивностей поглощения в мультиплете (т.е. в совокупности спектральных линий, образующихся при переходах между двумя энергетич. уровнями, расщеплёнными на подуровни). Этот эффект может наблюдаться для линии поглощения, образующихся в разреженных оболочках звёзд, где имеется интенсивный направленный поток излучения. Учёт выстраивания спинов может дать качественно новую информацию относительно анизотропии физ. условий в исследуемых объектах, а именно: о направлении магн. ноля и угловом распределении потока излучения. Напр., по измеренному отношению интенсивностей линий дублета натрия и в спектре комет и степени поляризации линии D2 можно определить направление магн. поля в голове кометы.
(Д.А. Варшалович)
Д. А. Варшалович, "Физика Космоса", 1986
Глоссарий Astronet.ru