Astronet Астронет: Туллио Редже/НиТ Туллио РЕДЖЕ "Этюды о Вселенной"
http://variable-stars.ru/db/msg/1172988/ev108.htm
Т.Редже "Этюды о Вселенной", Мир/НиТ
<< 1.7. Введение в космологию | Оглавление | 1.9. Нейтрино и космология >>

 

1.8. Большой взрыв

Сейчас мы снова, но уже более углубленно обсудим ряд вопросов, которые были затронуты ранее, в частности теорию "большого взрыва".

Парадокс Ольберса

Мы уже говорили о том возражении, которое выдвинули де Шезо и Ольберс против представлений начинавшей зарождаться космологии. В то время считалось, что космическое пространство бесконечно, равномерно заполнено звездами и в таком состоянии пребывает вечно. Де Шезо и Ольберс исходили из всем известного факта, что небо темнеет, когда заходит солнце.

Логика их рассуждений не меняется, если допустить, что все звезды имеют одинаковую светимость. Представим теперь, что окружающее нас пространство разделено на концентрические сферические слои одинаковой толщины. Объем одного такого слоя равен произведению его толщины на площадь его поверхности, и, следовательно, количество звезд, находящихся в одном слое, в среднем пропорционально площади его поверхности, т.е. квадрату его радиуса. Поэтому если мы удвоим радиус какого-либо сферического слоя, то обнаружим в нем вчетверо больше звезд, каждая из которых, находясь уже на расстоянии вдвое большем, чем прежде, светится вчетверо слабее. Таким образом, яркость света, дошедшего до нас, останется прежней. Более того, существует бесконечное число таких сферических слоев, и от каждого до нас доходит свет одинаковой яркости. Если продолжить наши рассуждения, придется сделать вывод, что мы можем получать сколь угодно большое количество света, и небо должно нам казаться бесконечно ярким! Даже при наличии в космосе непрозрачной пыли положение не изменится: поглощая свет от звезд, пыль нагревалась бы и сама излучала свет.

Таким образом, либо Вселенная не является бесконечной, либо она не вечна и изменяется со временем, либо, наконец, несправедлив космологический принцип, т.е. звезды распределены неравномерно. Утверждение, что Вселенная не изменяется во времени, во всяком случае, заведомо неверно: любая звезда получает свою энергию от термоядерного источника, который хотя и очень мощный, но все же не является неисчерпаемым; так, Солнце светит в течение более 5 млрд. лет и будет еще светить не более 10 млрд. лет. Мы еще не знаем, бесконечна ли Вселенная; ответ на этот вопрос зависит от результатов очень тонких наблюдений за галактиками. Тем не менее общепринятое мнение таково: в какой-то степени пересмотренный космологический принцип (место звезд займут галактики) должен быть сохранен.

Закон Хаббла

Самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными Хабблом. Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные "острова" – галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют "правильную" форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую "Галактику", которая включает в себя в качестве незначительной периферийной звезды и наше Солнце.

В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Как уже говорилось, обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

Интуитивные модели расширения Вселенной

Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: "галактики-солдаты" по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.

Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.

Другим примером интуитивного образа может служить взрыв бомбы; в этом случае чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т.е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин "большой взрыв" (the big bang). Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров.

Но где же находится эта отправная точка? Ответ: нигде и в то же время повсюду; указать ее местонахождение невозможно – это противоречило бы космологическому принципу. Еще одно сравнение, возможно, поможет нам понять это утверждение.

Согласно общей теории относительности Эйнштейна, присутствие вещества в пространстве приводит к искривлению последнего. При наличии достаточного количества вещества (мы вернемся к этому позже) можно построить модель искривленного пространства, напоминающего искривленную поверхность Земли. Передвигаясь на Земле в одном направлении, мы в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет; кроме того, "роза ветров" не ограничивается четырьмя частями света, а включает направления также вверх – вниз, или, лучше, зенит – надир. Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения местоположения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. А можно ли взглянуть внутрь надувного шарика? Для этого пришлось бы выйти в четвертое измерение, чего ни один физик не умеет делать; и хотя, вообще говоря, можно использовать и шесть измерений, все мы в общем сходимся на том, что речь здесь идет всего лишь о некой игре слов, а всю физику вполне можно осознать, удобно разместившись или, лучше сказать, будучи нарисованными на поверхности такого воздушного шарика.

Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется; на шарике нет выделенных точек; площадь, на которой были выстроены солдаты, теперь представляет всю Вселенную; площадь эта весьма странная: выходим через калитку на север, а, возвращаясь, обнаруживаем, что появляемся на площади с южной стороны, и т.д.

Недостающая масса

Галактики притягиваются друг к другу согласно закону Ньютона, который, если его видоизменить соответствующим образом, будет справедлив также и в теории Эйнштейна и по которому они должны все время почти незаметно замедляться. Измерение этого замедления позволило бы узнать, сколько вещества присутствует во Вселенной. К сожалению, очень трудно выполнить такое измерение, зависящее от наблюдений самых далеких и, следовательно, самых "молодых" галактик (если учесть то длительное время, которое требуется свету, чтобы до нас дойти, то получится, что галактика, удаленная от нас на 5 млрд. световых лет, будет восприниматься такой, какой она была 5 млрд. лет тому назад, т.е. в момент излучения света). Движение молодых галактик должно казаться не столь замедленным, что должно привести к незначительному отклонению от закона Хаббла. Но оценить расстояние до таких галактик очень трудно, в частности потому, что в течение миллиардов лет сами они могут существенно эволюционировать.

Другой способ оценить полное количество вещества во Вселенной состоит в простом подсчете всех галактик вокруг нас.

Поступая таким образом, мы получим вещества меньше (примерно в десять раз), чем необходимо, чтобы, согласно Эйнштейну, замкнуть "воздушный шарик" Вселенной. Но это не такая уж беда. Существуют модели открытой Вселенной, математическая трактовка которых столь же проста (или сложна, в зависимости от точки зрения) и которые объясняют нехватку вещества. С другой стороны, может оказаться, что во Вселенной имеется не только вещество в виде галактик, но и невидимое вещество 1 (например, нейтринный газ, о котором мы будем говорить ниже) в количестве, необходимом, чтобы Вселенная была замкнута; полемика по этому поводу до сих пор не затихает.

Хроника первых миллионов лет

Чтобы получить ответ на этот вопрос, были проведены исследования начальной стадии эволюции Вселенной, наступившей непосредственно за "большим взрывом". Невозможно начать рассказ о "сотворении мира" непосредственно с момента "нуль", т.е. начиная с сакраментального изречения "Да будет свет!". Этот момент есть всего лишь математический образ, присутствующий в уравнениях Эйнштейна; никто не может гарантировать, что законы физики остаются справедливыми для такого состояния вещества, при котором весь космос оказывается сжатым до размеров спичечной головки. Нам придется удовлетвориться тем, что отправной точкой мы будем считать десятитысячную долю секунды после самого начала. Из проделанных вычислений следует, что радиус кривизны Вселенной в этот момент равнялся примерно одной тридцатой части светового года, т.е. 300 млрд. км, что в тысячу раз превышает размеры Солнечной системы. Хотя это и колоссальная величина, но она ничтожна по сравнению с размерами современной Вселенной. Таким образом, вещество находилось в крайне сжатом состоянии с плотностью в тысячи миллиардов раз больше, чем плотность воды, и при чрезвычайно высокой температуре порядка одного триллиона градусов. Происходящее в космосе можно было бы сравнить, например, с быстрым расширением воздуха, нагретого при сжатии его в велосипедном насосе. Чем же был заполнен космос в эти мгновения?

Напомним, что температура газа представляет собой не что иное, как меру средней энергии составляющих его частиц. Если эти частицы попытаться нагреть, до триллиона градусов, то они будут сталкиваться друг с другом с такой силой, что атомы разобьются на ядра и электроны; в свою очередь ядра разобьются на нейтроны и протоны, из которых они состоят. Более того, энергия разлетающихся частей будет столь высока, что сможет материализоваться согласно формуле E = mc2 и привести к появлению вещества – антивещества (пар мюонов и электрон-позитронных пар).

Космические соударения сначала происходят в неистовом ритме, который со временем затихает; в конце концов столкновения становятся совсем редкими. Расширяясь, Вселенная охлаждается со скоростью, обратно пропорциональной ее радиусу. В свою очередь радиус Вселенной увеличивается как корень квадратный из прошедшего времени; так, например, при увеличении времени от одной до четырех секунд радиус Вселенной увеличится в два раза, в то время как температура уменьшится вдвое. По прошествии одной секунды после начала пропадают мюоны и начинается образование более стабильных ядер (главным образом ядер гелия, или $\alpha$-частиц, состоящих из двух протонов и двух нейтронов). В течение последующих трех минут нуклеосинтез по существу заканчивается.

Спустя четверть часа после начала (т.е. примерно через 1000 секунд) радиус Вселенной достигает 100 световых лет, а температура равна "всего лишь" 300 млн. градусов, что сравнимо с температурой, наблюдаемой при термоядерных взрывах. С этого момента наблюдается более медленное охлаждение Вселенной наряду с ее расширением, и пройдет еще миллион лет, прежде чем произойдет новый качественный скачок в картине развития Вселенной. Температура при этом упадет уже до четырех тысяч градусов, и свободные электроны начнут рекомбинировать с ядрами, образуя атомы, которые, наконец, будут способны противостоять уменьшившемуся уровню тепла.

Реликтовое излучение

Что бы мы увидели, если бы могли окинуть взглядом пространство в ту далекую первоначальную эпоху?

Яркость равномерного свечения неба всего в десять раз меньше, чем у поверхности Солнца (что очень близко к яркости свечения солнечных пятен, в свою очередь сравнимой с яркостью дуговой лампы). Жара, как в аду, поддерживает вещество в возбужденном состоянии, не давая ему конденсироваться. После образования атомов вещество становится прозрачным для света, и свет блуждает в течение миллиардов лет по всей Вселенной вплоть до наших дней. Почему же мы его не видим? Ответ состоит в том, что его все-таки удалось увидеть, хотя и не в виде "света" в обычном смысле. Расширение Вселенной приводит к смещению цветов спектра в сторону красного (при удалении источника увеличивается длина волны света). Эффект становится очень заметным, если он накапливается в течение всей предшествующей жизни космоса; излучение становится микроволновым, невидимым для глаза; его, однако, можно зарегистрировать с помощью радиотелескопов, что и сделали Пензиас и Уилсон в 1965 г. (в лабораториях фирмы "Белл"). Результаты этих исключительно важных наблюдений дают наиболее веское подтверждение гипотезы "большого взрыва". Реликтовое излучение (именно так его называют) представляет собой самое древнее из имеющихся свидетельств нашей эволюции; оно было испущено, когда прошло меньше одной тысячной доли всей жизни Вселенной. В те времена динозавры еще маячили как призраки далекого будущего, египетские пирамиды могли бы восприниматься как начало сегодняшнего дня, и все это представляло незначительные события в жизни незначительной планеты, принадлежащей второстепенной галактике.

Роль дейтерия

Существуют ли причины, кроме простого любопытства, по которым следует определять различные численные характеристики "сверхварева" вещества, появившегося вслед за "большим взрывом"? Да, и вот одна из них.

Из вычислений следует, что оставшийся "пепел" должен был состоять примерно на три четверти из водорода; остальная часть – это гелий и очень малые примеси более тяжелых элементов. Не случайно, что такой же начальный состав галактического вещества получается и из данных о эволюции звезд. Кроме того, в этом месиве должен был присутствовать тяжелый изотоп водорода – дейтерий, относительно легкий по сравнению с другими ядрами. По всей видимости, дейтерий не может создаваться в горниле звездных печей, где он бы сразу превращался в гелий или так или иначе разрушался. Поэтому встречающийся в настоящее время дейтерий (даже в стенах домов) должен был сохраниться еще со времени "большого взрыва". Если Вселенная действительно была тогда очень плотной (настолько, чтобы быть замкнутой), то, как показывают расчеты, частые столкновения дейтонов (ядер дейтерия) с другими ядрами чрезвычайно быстро привели бы к их разрушению.

Таким образом, обнаружение значительного количества дейтерия в нынешней Вселенной указывало бы на малую плотность вещества в ней, т.е. на то, что Вселенная открыта. Наблюдения нашей Галактики, судя по всему, подтверждают существование межзвездных облаков, состоящих из дейтерия, что говорит в пользу модели открытой Вселенной, по крайней мере временно, поскольку не исключена возможность того, что будет обнаружен остроумный способ образования дейтерия в звездах, противоречащий нашим рассуждениям.

Образование галактик

Каковы же размеры современной Вселенной и когда появились галактики?

Образование галактик началось только спустя миллиард лет после "большого взрыва". К этому моменту вещество уже успело охладиться до идиллических температур (всего в сотню градусов) и стали появляться стабильные флуктуации плотности среди облаков газа, равномерно заполнявших космос. Локальное увеличение плотности вещества оказывается стабильным, если плотность достаточно велика, так как в этом случае создается локальное гравитационное поле, способствующее сохранению вещества в сжатом состоянии.

Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Хотя в общих чертах нам ясно, что тогда происходило, но механизм образования галактик все же понят не до конца и противоречит аккуратным подсчетам наблюдаемых масс галактик и их скоплений. Так что работы осталось много. Проникая с помощью телескопов все дальше в глубь космоса, мы обнаруживаем, что самые далекие объекты перемещаются со скоростями, вплотную приближающимися к скорости света, и поэтому они перестают быть видимыми. Где-то вдалеке существует горизонт, и свет от объектов, находящихся за ним, до нас еще не дошел; находится этот горизонт на расстоянии примерно 12 млрд. световых лет. Насколько можно судить, космос заполнен множеством галактик (десятками миллиардов), объединенных в гигантские скопления, содержащие сотни и тысячи галактик.

Замкнута или открыта Вселенная?

Если Вселенная замкнута, то она должна достичь предельных размеров, после чего расширение сменится сжатием, и примерно через 100 млрд. лет, пройдя в обратном порядке все этапы своего пути, Вселенная снова сожмется в точку.

Если же Вселенная открыта, то она будет расширяться до тех пор, пока галактики не уйдут за пределы видимости друг друга. В конце концов мы дойдем до абсолютно темных небес.

Если бы вся эта колоссальная космическая машина имела единственной целью сотворение Земли, можно было бы удивляться напрасной трате времени или упущенным возможностям, во всяком случае, если, как мы подозреваем, наша планета – единственная, приютившая разумную жизнь.

В действительности Вселенная потратила не слишком много времени на создание жизни: 20 млрд. лет хоть и кажутся целой вечностью, на самом деле представляют собой лишь минимум, необходимый для того, чтобы где-то в недрах звезд начался синтез элементов, нужных для поддержания живых организмов. И если разобраться, то около трех миллиардов лет назад уже существовали водоросли и простейшие.

Должны ли мы доверять теории "большого взрыва"? В общем я бы дал положительный ответ на этот вопрос; или, что еще лучше, можно считать ее захватывающей рабочей гипотезой, которая приподнимает завесу над нашим далеким прошлым вплоть до самых истоков.


<< 1.7. Введение в космологию | Оглавление | 1.9. Нейтрино и космология >>

Rambler's Top100 Яндекс цитирования