Астронет: Станислав Михаль/НиТ Часы. От гномона до атомных часов http://variable-stars.ru/db/msg/1172786/ch220.htm |
<< Первые механические часы | Оглавление | Спусковые механизмы с отходом для больших часов >>
Функциональные элементы механических часов
Любой часовой механизм можно разделить на четыре основные функциональные группы, а именно: приводной и передаточный механизм, спусковой механизм, осциллятор и индикаторная часть. Источник энергии привода у механических часов обычно бывает встроен в сам механизм часов и является его составной частью, например барабаны с гирями или же пружинный механизм с пружиной.
Требуемое количество энергии отмеривается в механических часах специальным устройством, так называемым спусковым механизмом или спуском, являющимся соединительным элементом между механизмом часов и осциллятором. Этот механизм постоянно соединен с передаточным механизмом часов, от которого он получает энергию привода. С осциллятором, который в современных часах имеет форму маятника или баланса, спуск взаимодействует лишь в определенные моменты, выполняя свою основную задачу, весьма важную для обеспечения хода часов, разделение постоянной энергии привода на отдельные силовые импульсы, поддерживающие колебания осциллятора. Другой задачей спускового механизма является суммирование колебаний осциллятора. Если предположить, что осциллятор колеблется с постоянной частотой, то спуск работает одновременно в качестве устройства, суммирующего постоянные интервалы времени полупериоды этих колебаний. Постоянство частоты осциллятора является главной предпосылкой точности хода часов. Если эта частота постоянна, то колебания осциллятора изохронны1.
В дальнейшем изложении вопроса о спусковых механизмах мы часто будем употреблять понятия "полуколебание" и "колебание". Под "полуколебанием" осциллятора мы будем здесь понимать его движение в течение полупериода колебаний из одного положения равновесия в другое, а под "колебанием" два следующих друг за другом "полуколебания". Продолжительность колебания называется его периодом. Под амплитудой мы будем понимать максимальное угловое отклонение осциллятора от его положения равновесия при колебаниях.
Осциллятор выполняет прежде всего роль генератора изохронных колебаний, но он регулирует и последовательность во времени силовых импульсов спуска, а этим, в свою очередь, регулируется ход всего часового механизма вместе с его индикаторным механизмом2.
В течение столетий индикаторным механизмом был стрелочный индикатор с циферблатом, который имел классический вид неподвижного циферблата с одной, двумя или несколькими вращающимися стрелками, или же с неподвижной стрелкой и с одним или несколькими вращающимися цилиндрическими шаровидными или плоскими циферблатами.
В последнее время снова стала преобладать цифровая индикация, ставшая известной уже в конце XIX и начале XX в. и способствовавшая тогда усилению сбыта коммерческих часовых приборов.
Спусковой механизм и осциллятор образуют регулятор, который определяет точность хода механических часов. Исследуя механизм старых часов, мы встречаемся с огромным количеством конструктивных вариантов, с сотнями успешных и менее удачных спусковых механизмов и с различными формами осцилляторов от простых маховиков через остроумно решенные сложные маятники и до современных самокомпенсирующихся балансов.
На первый взгляд представляется, что конструкция спускового механизма зависела от индивидуальных представлений и что между отдельными типами спусков нет общих признаков, по которым их можно было бы подразделить на группы. Однако общие признаки существуют, и по ним можно оценивать принцип и функцию спусковых механизмов с нескольких точек зрения. В целях наглядности мы будем рассматривать только те спусковые механизмы, которые чаще всего использовались в старых механизмах часов и имели наиболее важное значение для развития таких часов.
Объясним работу спускового механизма часов на примере наиболее известного и оправдавшего себя анкерного спуска (рис. 8).
Рис. 8. Спусковой механизм современных механических часов
Главными частями такого спуска является анкер 2 с рабочими изогнутыми штифтами, так называемыми палетами 1, и зубчатое спусковое колесо. Палеты анкера охватывают определенное количество зубьев спускового колеса и поочередно заходят в эти зубья. В положении, показанном на рис. 8, зуб спускового колеса подошел к левой палете и опирается на боковую поверхность, так называемую поверхность покоя. Маятник соединен вилкой с анкером, и здесь он находится в амплитудном положении и начинает опускаться в положение равновесия. Если при этом движении анкер повернется на определенный угол обхвата , то зуб спускового колеса упрется в наклонную, так называемую импульсную, плоскость палеты, и при дальнейшем движении по этой плоскости он поднимет левое плечо анкера и при этом придаст анкеру и маятнику силовой импульс.
Длина этого импульса выражена углом импульса . После окончания импульса палета 1 освободит зуб спускового колеса, спусковое колесо скачкообразно повернется, пока соответствующий зуб спускового колеса 2 не натолкнется на поверхность покоя второй палеты 3. Затем маятник легко перейдет на свою точку левого поворота и снова возвратится, пока зуб 2 перейдет с поверхности покоя на наклонную плоскость импульса правой палеты, а анкер получит импульс в обратном направлении. Этот процесс циклически повторяется. Анкерный механизм работает с двусторонним импульсом. Спусковое колесо при каждом полуобороте поворачивается на половину шага зубьев. Короткий скачок спускового колеса, сопровождаемый известным характерным тиканьем часов, правда, связан с некоторой потерей энергии, но он необходим для придания импульса анкеру и осциллятору.
Внимательное наблюдение за поведением спускового колеса приведет нас к первому критерию классификации спусков. У старых спусковых систем мы часто встречаемся с таким явлением, что анкер при завершении полуколебания осциллятора отжимает назад спусковое колесо и вынуждает его совершить небольшое, едва заметное возвратное движение. У современных же спусков спусковое колесо, наоборот, остается в покое. В зависимости от поведения спускового колеса можно, следовательно, распределить спуски на спуски с отходом назад и спуски без отхода.
У обычных маятниковых или балансовых часов, приводимых соответственно гирей или пружиной, величина момента импульса, а с ней и продолжительность полуколебания зависит от момента привода, величина которого под влиянием переменных сопротивлений, изменяющегося момента привода пружины и т.п. может изменяться настолько, что это будет значительно влиять на ход часов. В отношении более точных часов, к которым принадлежат некоторые виды хронометров, этот недостаток был устранен введением дополнительного элемента в виде гири или пружины между спусковым колесом и анкером, придающим осциллятору импульсы одинаковой величины. У спусковых механизмов, у которых нет этого элемента, осциллятор получает переменные импульсы. Оценивая спусковые механизмы с точки зрения постоянства импульсной силы, мы придем к следующему критерию, подразделяющему спусковые механизмы на механизмы с переменной силой и механизмы с постоянной импульсной силой.
Третий, весьма важный аспект касается прочности связи между спусковым механизмом и осциллятором. Что здесь понимается под прочностью связи? Рассматривая соединение маятниковой штанги обычных часов с анкером спускового механизма, мы увидим, что вилка, которая обычно жестко соединена с валом анкера, принуждает маятник к согласованному движению с анкером. Связь между спусковым механизмом и осциллятором здесь поддерживается на протяжении всех колебаний, вследствие чего все нестабильности передачи силы привода полиостью переносятся на осциллятор и сильно нарушают равномерность его колебаний. Такие спусковые механизмы называют несвободными, и у таких часов трудно добиться большой точности хода.
Современные же спусковые механизмы, например швейцарский анкерный спуск современных механических наручных часов, наоборот, сконструированы так, что их осцилляторы колеблются большую часть времени независимо и соприкасаются со спусковым механизмом лишь на очень короткий момент, необходимый для передачи им импульса. Такие спусковые механизмы относятся к группе свободных.
Эта последняя категория спусковых механизмов имеет очень важное значение. В прошлом она дала также стимул для возникновения весьма совершенных систем точных часов со свободными маятниками, которые привились в научном измерении времени, в астрономии и в специальных часовых лабораториях. Свободные маятники были завершающей фазой развития механических колесных часов, имевшей наибольший успех в первых трех десятилетиях нашего века. Результаты измерения времени механизмами со свободными маятниками были отличными, и их превзошли только современные электронные системы с кварцевыми осцилляторами.
Практика показала, что одни спусковые механизмы или их модификации лучше подходят для крупных башенных, напольных или настенных часов, а другие исключительно для малых карманных или наручных часов.
1 Это не совсем точно: изохронными называются колебания, частота которых не зависит от амплитуды. (Прим. науч. ред.)
2 Роль генератора колебаний в часах выполняют в своей совокупности осциллятор и спуск, взаимодействующие при своей работе как автоколебательная система. (Прим науч. ред.)
<< Первые механические часы | Оглавление | Спусковые механизмы с отходом для больших часов >>