Astronet Астронет: К. А. Постнов/ГАИШ Лекции по Общей Астрофизике для Физиков
http://variable-stars.ru/db/msg/1170612/4lec/node2.html
Лекции по Общей Астрофизике для Физиков

<< 4. Межзвездная среда | Оглавление | 4.2 Радиолиния нейтрального водорода >>

Разделы


4.1 Физические особенности состояния космической плазмы

Основная особенность физического состояния межзвездной среды (МЗС) ее крайне низкая плотность. Типичные величины - 0.1-1000 атомов в куб. см, и при характерных скоростях молекул около 10 км/с время столкновения между отдельными частицами достигает десятков и тысяч лет. Это время на много порядков превышает характерные времена жизни атомов в возбужденных состояниях (на разрешенных уровнях - порядка с). Следовательно, поглощенный атомом фотон успевает вновь излучаться с возбужденного уровня, вероятность истинного поглощения неионизующих квантов атомами МЗС (когда энергия поглощенного фотона переходит в кинетическую энергию хаотического движения частиц) крайне мала.

Линия поглощения становится различимой на фоне непрерывного спектра (континуума) уже при оптических толщинах в центре линии . Сечение поглощения связано с оптической толщой соотношением где - число атомов на луче зрения. Т.к. поглощающий в линии атом можно представить как гармонический осциллятор с затуханием, то расчет и классический, и квантовомеханический дает для профиля сечения поглощения


(формула Лоренца), где [c] - полная вероятность перехода между атомными уровнями, который отвечает за данную линию поглощения (величина характеризует полуширину линии), , . В оптическом диапазоне  A, поэтому в центре линии  см4.1. По линиям поглощения МЗС, наблюдаемых в спектрах звезд, можно определять примеси с крайне малой концентрацией. Например, взяв расстояние 300 пк  см (характерное расстояние до ярких звезд) находим, что по межзвездным линиям поглощения можно определять концентрацию поглощающих атомов  см - 1 атом в объеме кубометров!

4.1.1 Отсутствие локального термодинамического равновесия

Прозрачность МЗС для излучения определят важнейшее физическое свойство межзвездной плазмы - отсутствие локального термодинамического равновесия (ЛТР). Напомним, что в условиях полного термодинамического равновесия все прямые и обратные процессы идут с одинаковыми скоростями (т.н. принцип детального баланса) и существует только одно значение температуры, которое определяет физическое состояние среды (локальное ТДР означает, что в каждой точке детальное равновесие существует и поддерживает ТДР, но температура является функцией координат и времени) 4.2.

Приближение ЛТР отлично работает в случае больших оптических толщин (например, в недрах звезд), причем не-ЛТР эффекты становятся заметными только с (например, в фотосферах звезд, откуда фотоны свободно уходят в пространство).

В межзвездной среде концентрация атомов мала, частиц в куб. см, оптические толщины малы и ЛТР не выполняется. Это связано с тем, что (а) температура излучения в МЗС (в основном, излучение звезд) высока К, а электронная и ионная температуры плазмы определяются столкновениями частиц и могут сильно отличаться от температуры излучения. Распределение атомов и ионов по населенностям уровней определяется балансом процессов ионизации и рекомбинации, однако в отличие от ЛТР, не выполняется принцип детального баланса. Например, в корональном приближении (предел низкой плотности частиц, название происходит от физического состояния плазмы в Солнечной короне) ионизациия атомов производится электронным ударом, а снятие возбуждения - спонтанными излучательными переходами, в зонах HII и в квазарах газ ионизован жестким УФ-излучением центрального источника и населенность уровней определяется процессами излучательной рекомбинации. В этих примерах прямые и обратные элементарные процессы имеют разную природу, поэтому условия далеки от равновесных. Однако даже в очень разреженной космической плазме Максвелловское распределение электронов по скоростям устанавливается (со своей температурой) за время много меньше характерного времени между соударениями частиц из-за дальнодействия кулоновских сил 4.3 поэтому для распределения частиц по энергиям можно пользоваться формулой Больцмана.

4.1.2 Вмороженность магнитного поля

Важнейшей компонентой МЗС, во многом определяюшей ее динамику, является крупномасштабное магнитное поле галактики. Среднее значение магнитного поля Галактики около  Гс. В условиях космической плазмы магнитное поле в подавляющем большинстве ситуаций вморожено в среду. Вмороженность магнитного поля в среду означает сохранение магнитного потока через замкнутый проводящий контур при его деформации: . В лабораторных условиях сохранение магнитного потока возникает в средах с высокой проводимостью 4.4. Однако в условиях космической плазмы более существенны большие характерные размеры рассматриваемых контуров и, соответственно, большие времена затухания магнитного поля по сравнению с временем изучаемого процесса. Покажем это. Рассмотрим объем плазмы , в котором текут токи с плотностью (плотность тока есть сила тока отнесенная к единичной площадке, перпендикулярной направлению тока). В соответствии с уравнениями Максвелла, токи порождают магнитное поле . Ток в плазме с конечной проводимостью затухает из-за Джоулевых потерь, связанных со столкновениями электронов с ионами. Выделяемое тепло в единицу времени в единичном объеме плазмы есть . Магнитная энергия в единице объема есть . Следовательно, характерное время диссипации магнитной энергии в тепло (и соответствующее затухание поля) в объеме с характерным размером определяется как


(эта оценка с точностью до фактора 2 совпадает с точным выражением для времени диффузии магнитного поля в среде с конечной проводимостью). Проводимость плазмы не зависит от плотности и пропорциональна и лежит в пределах ед. СГСЭ (примерно на порядок хуже, чем меди). Однако из-за больших масштабов космической плазмы (астрономическая единица и более) время затухания магнитного поля оказывается больше характерных времен изменения площади, охватываемой рассматриваемыми контурами. Это означает, что поле ведет себя как вмороженное и поток через замкнутый контур сохраняется. При сжатии облака плазмы поперек поля величина магнитного поля возрастает, причем физическая причина возрастания поля - появление ЭДС индукции, препятствующей изменению поля.

Вмороженность магнитного поля в плазму является хорошим приближением практически во всех астрофизических ситуациях (даже при динамических процессах коллапса ядер звезд из-за коротких характерных времен). Однако в малых масштабах это приближение может не выполняться, особенно на масштабах резкого изменения поля. Эти места характеризуются резкими поворотами магнитных силовых линий.

4.1.3 Запрещенные линии

.

Отличительной характеристикой излучения, возникающего в оптически тонкой разреженной среде, является возможность излучения в запрещенных линиях атомов. Запрещенные спектральные линии - линии, образующиеся при переходах в атомах с метастабильных уровней (т.е. запрещенные правилами отбора для электрических дипольных переходов). Характерное время жизни атома в метастабильном состоянии - от c до неск. суток и более. При высоких концентрациях частиц ( в земной атмосфере, см в солнечной фотосфере) столкновения частиц снимают возбуждение атомов и запрещенные линии не наблюдаются.

Действительно, рассмотрим линию, образующуюся при переходе с уровня на уровень с вероятностью перехода (число переходов в единицу времени), выходящую из объема оптически тонкой плазмы. Светимость в линии

(4.1)

где - энергия одного фотона, , - относительная концентрация иона элемента Х на уровне , - обилие элемента Х относительно водорода. Т.к. вероятность мала, запрещенные линии оказываются чрезвычайно слабыми. В условиях ЛТР заселенность уровня определяется формулой Больцмана и не зависит от концентрации электронов.

В условиях низкой плотности ситуация иная. Рассмотрим, например, корональное приближение, когда ионизация атомов осуществляется только электронными ударами. При Максвелловском распределении по скоростям доля электронов с энергией, достаточной для возбуждения -го уровня . Частота столкновений, приводящая к возбуждению, ( [см/c]- скорость возбуждения атома на -й уровень электронным ударом, отнесенная к единичному объему). Полная вероятность радиативного распада уровня на остальные уровни , и из баланса возбуждения-распада получаем относительную концентрацию


Отсюда видно, что, во-первых, заселенность уровня иона зависит от концентрации электронов . Во-вторых, поскольку , оказывается , чем в равновесном (Больцмановском) случае. Формула для светимости линии в корональном приближении принимает вид
(4.2)

Видно, что (1) и (2) фактор ветвления может быть порядка 1 (например, для нижних возбужденных уровней). Это означает, что мощность излучения как в разрешенных, так и в запрещенных линиях в корональном приближении должна быть одного порядка и зависит от величины
(4.3)

которая называется объемной мерой эмиссии. Интенсивность линий излучения (поверхностная яркость) определяется линейной мерой эмиссии
(4.4)

и измеряется в единицах [пк/cм]. Методы современной астрономии позволяют наблюдать объекты с а в ряде случаев - с пк/cм.

Наиболее важные запрещенные линии, встречающиеся в газовых планетарных туманностях и зонах ионизованного водорода НII вокруг горячих звезд - дублет дважды ионизованного кислорода [OIII] ( A, , УФ линии однократно ионизованного кислорода [OII] A, а также ионов SII, NII и др. Сравнивая интенсивности линий иона OIII A (метастабильный третий уровень) и дублета и (метастабильный второй уровень), можно определить температуру газа планетарных туманностей, т.к. относительная заселенность этих уровней определяется температурой электронов.

Эмиссионные линии в спектре солнечной короны удалось расшифровать лишь в 1942 г. как запрешенные эмиссии многократно (от 12 до 15 раз) ионизованных атомов Fe, Ni, Ca (температура короны несколько млн. К, поэтому степень ионизации тяжелых ионов очень велика, есть атомы водородоподобного и гелиеподобного железа). Наиболее характерная в оптике запрещенная линия солнечной короны - зеленая линия [FeXIV]  A. В рентгеновском спектре короны видна запрещенная, резонансная, и интеркомбинационная (переход с изменением спина) линии гелия примерно равной интенсивности, хотя степень запрета достигает при заряде иона (с ростом заряда иона степень запрета ослабевает).



<< 4. Межзвездная среда | Оглавление | 4.2 Радиолиния нейтрального водорода >>

Rambler's Top100 Яндекс цитирования