Поиск по:higeom.math.msu.su -
Поискать по всем серверам
На этой странице приведены все страницы сервера higeom.math.msu.su ,которые мы индексируем. Показаны документы 741 - 744 из 744.
Упорядочить по:
URL
|
дате изменения
741. http://higeom.math.msu.su/people/taras/papers/9912199.ps
... 1) If A = ?, then K(A) is an (m \Gamma 1)-dimensional simplex \Delta m\Gamma1 . ... Then build a map C' from the cone C ' \ Delta m\ Gamma1 over ' \ Delta m\ Gamma1 to I m by sending the vertex of the cone to the vertex (1; : : : ; 1) of the cube and extending linearly on simplices TORUS ACTIONS AND COORDINATE SUBSPACE ARRANGEMENTS 7 \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma u u u u \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ Gamma \ ...
[
Текст
]
Ссылки http://higeom.math.msu.su/people/taras/papers/9912199.ps -- 192.5 Кб -- 13.02.2001
Похожие документы
Похожие документы
742. http://higeom.math.msu.su/people/taras/papers/aarhus.ps
... Firstly, consider the first nontrivial MacMullen inequality for simple P n (see [Br]): h 1 џ h 2 ; for n – 3: Using identity (4.5), one can express the above inequality in terms of the bigraded Betti numbers b \Gammaq;2r as follows: b 3 (ZP ) = b \Gamma1;4 (ZP ) џ \Gamma m\Gamman 2 \Delta ; for n – 3: (4.6) Secondly, let us consider the wellknown Upper Bound for the number of faces of simple polytope. In terms of the hvector it is as follows: h i џ \Gamma m\Gamman+i\Gamma1 i \Delta (see [Br]). ...
[
Текст
]
Ссылки http://higeom.math.msu.su/people/taras/papers/aarhus.ps -- 180.7 Кб -- 13.02.2001
[ Текст ] Ссылки http://higeom.math.msu.su/people/taras/papers/proceed/aarhus98.ps -- 180.7 Кб -- 13.02.2001
Похожие документы
[ Текст ] Ссылки http://higeom.math.msu.su/people/taras/papers/proceed/aarhus98.ps -- 180.7 Кб -- 13.02.2001
Похожие документы
743. http://higeom.math.msu.su/people/taras/papers/moment_e.ps
MOMENTANGLE COMPLEXES AND COMBINATORICS OF SIMPLICIAL MANIFOLDS VICTOR M. BUCHSTABER AND TARAS E. PANOV Let ae : (D 2 ) m ! ... Each face of the cube I m = [0; 1] m (viewed as a cubical complex) has the form FIaeJ = f(y1 ; : : : ; ym) 2 I m : y i = 0 if i 2 I; y j = 1 if j = 2 Jg; where I ae J are two subsets of the index set [m] = f1; : : : ; mg. ... Let K n\Gamma1 be an (n \Gamma 1)dimensional simplicial complex with m vertices, and jKj the corresponding polyhedron. ...
[
Текст
]
Ссылки http://higeom.math.msu.su/people/taras/papers/moment_e.ps -- 61.9 Кб -- 13.02.2001
Похожие документы
Похожие документы
744. http://higeom.math.msu.su/people/taras/papers/0010073.ps
TORUS ACTIONS, COMBINATORIAL TOPOLOGY AND HOMOLOGICAL ALGEBRA VICTOR M. BUCHSTABER AND TARAS E. PANOV Abstract. The paper surveys some new results and open problems connected with such fundamental combinatorial concepts as polytopes, simplicial com plexes, cubical complexes, and subspace arrangements. Particular attention is paid to the case of simplicial and cubical subdivisions of manifolds and, espe cially, spheres. We describe important constructions which allow to study all these combinatorial
[
Текст
]
Ссылки http://higeom.math.msu.su/people/taras/papers/0010073.ps -- 841.2 Кб -- 13.02.2001
Похожие документы
Похожие документы