Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://zmmu.msu.ru/bats/biblio/artyx12.pdf
Äàòà èçìåíåíèÿ: Fri Apr 26 15:52:00 2013
Äàòà èíäåêñèðîâàíèÿ: Thu Feb 27 22:16:25 2014
Êîäèðîâêà: koi8-r
Vespertilio 16: 31­42, 2012 ISSN 1213-6123

A molecular reappraisal of the taxonomic status of Eptesicus serotinus turcomanus
Iliya Artyushin1, Vladimir L
1 2

ebedev2

, Anna bA

nnikovA1

& Sergei kruskop

2

Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory 1/12, Moscow, 119991 Russia Zoological Museum of Moscow State University, Ul. Bolshaya Nikitskaya 6, Moscow, 125009 Russia

Abstract. The taxonomic status of the Turanian serotine Eptesicus serotinus turcomanus is still debatable. To examine the pattern of genetic variation in E. s. turcomanus and E. s. serotinus from SE Europe we analyzed sequence data on mitochondrial cytb gene and introns of THY and SPTBN genes. The cytb results do not reveal any substantial difference between E. s. turcomanus and E. s. serotinus from southern Russia. In contrast to that, the data on both nuclear genes indicate moderate differentiation between eastern and western populations and, at the same time, suggest the existence of gene flow between them. Several population history hypotheses can be proposed to explain the pattern. However, regardless of the scenario, our results demonstrate the lack of genetic isolation between E. s. serotinus and E. s. turcomanus and, therefore, contradict the species status for the latter. Eptesicus, taxonomy, serotine, East Europe, Central Asia, geographic variation, Chiroptera

Introduction
The common serotine, Eptesicus serotinus (Schreber, 1774), is one of the most widely distributed Palaearctic bat species, occurring from westernmost Europe to northern Indochina and Taiwan (Bobrinskij et al. 1965, Corbet 1978, Corbet & Hill 1992, Simmons 2005, Smith & Xie 2008). Such a large distribution range correlates with pronounced geographical variation, with about ten subspecies being currently recognized (Simmons 2005); presumably two of them are present in the Russian fauna (Strelkov & Iljin 1992). However, recent studies, and primarily those based on molecular data, demonstrated significant heterogeneity within E. serotinus sensu lato suggesting that this name might correspond to a complex of cryptic species (IbÀßez et al. 2006, Mayer et al. 2007). The separate species status of one of these forms ­ E. isabellinus (Temminck, 1840) ­ has been confirmed by several studies and accepted by most specialists (Benda et al. 2004, Garcia-Mudarra et al. 2009, IbÀßez et al. 2006). The so-called Turanian serotine, E. s. turcomanus (Eversmann, 1840) was described from the territory of Kazakhstan, "in between the Aral and Caspian seas" (cf. Ognev 1928, Pavlinov & Rossolimo 1987), probably, from the northern slopes of the Ustyurt Plateau (see Sokolov & Shishkin 2005). Considered a full species in the original description, it is now regarded as a subspecies of E. serotinus. Traditionally E. s. turcomanus was distinguished from the nominotypical subspecies by smaller skull size and paler skin and fur coloration (Bobrinskiy et al. 1965, Ognev 1928, Gaisler 1970). Both subspecies occur in the European part of Russia, their distribution being parapatric in the Lower Volga region (Iljin et al. 2002, Strelkov & Iljin 1992). Benda et al. (2006) analyzed craniodental measurements of West Asian serotines and confirmed that E. s. turcomanus is a well-

31


differentiated subspecies of E. serotinus. Smirnov & Yanyaeva (2003) conducted a colorimetric analysis of fur color; according to these authors, populations assigned to E. s. turcomanus are significantly different from the typical serotine despite high color variation within certain populations. Finally, based on the results of inter-SINE PCR analysis, it was suggested to elevate the Turanian serotine to the species rank (Mateveev 2003); the same conclusion was supported by some mtDNA studies (Juste et al. 2010, Benda et al. 2011). Contrary to that, our previous molecular results (Artyushin et al. 2009) did not reveal any significant difference between E. s. serotinus and E. s. turcomanus in southern Russia, this being in sharp contrast to huge mtDNA differentiation between Russian and West European E. serotinus s.str. The latter phenomenon was explained by mtDNA introgression from a different species ­ E. nilssonii (Keyserling et Blasius, 1839) ­ which affected only the European populations of E. serotinus (Artyushin et al. 2009). Given this background, one has to conclude that the status of the Turanian serotine still requires clarification. In our study we addressed this issue based on the sequence data for one mitochondrial and two nuclear genes.

Material and Methods
In our analyses we used 67 Eptesicus serotinus s.l. tissue samples from museum vouchers and our tissue sample collection. We also used our previously obtained sequences deposited in the GeneBank. For sampling localities, voucher and GeneBank accession numbers see Appendix. Genomic DNA was isolated from ethanol-fixed liver, kidney or muscles by proteinase K digestion, phenol-chloroform deproteinization and isopropanol precipitation (Sambrook et al. 1989). The whole of the mitochondrial cytb gene (1140 bp) was amplified by polymerase chain reaction (PCR) with the forward/reverse primer combination L14734/H15395_pip; in cases when DNA was degraded, fragments of cytb were amplified using the internal primers Ept_L486 and Ept_H602 (Artyushin et al. 2009). For amplification of intron 2 and exon 3 of THY gene and intron 13 of SPTBN gene we used primers designed by Eick et al (2005). The conditions of the double-stranded PCR for cytb and introns amplification included the initial denaturation at 94 °C for 3 min, 35 cycles of 94 °C for 30 s, annealing at 57 ° for cytb, 59 ° for THY and 71 °C for SPTBN during 1 min, and extension at 72 °C for 1 min, followed by a final extension at 72 °C for 10 min, and indefinite storage at 4 °C. PCR products were visualized on 1% agarose gel and then purified using DEAE Watman or NH4EtOH. Approximately 10­40 ng of the purified PCR product were used for sequencing with each primer by the ABI 3100Avant autosequencing system using ABI PRISM®BigDyeTM Terminator v. 3.1. Sequences were aligned by eye in Bioedit (v. 7.0.9; Hall 1999). For allelic phase reconstruction, Phase 2.1 (Stephens et al. 2001, Stephens & Donnelly 2003) was used. Total alignment length for THY and SPTBN genes was 498 bp and 540 bp, respectively. The SPTBN alignment contained informative gaps which were recoded and treated as nucleotide substitutions in subsequent analysis. For haplotype frequency analysis we divided our sample into 8 geographical groups (Fig. 1). Three eastern samples (ASTR, KAZ and UZB) include specimens which are identified as E. s. turcomanus based on morphological criteria. Four other geographical samples (KRSN, SAM, BRYA, UKR) represent the nominotypical subspecies. Most of specimens from the Volgograd region (VOLG) belong to E. s. serotinus; however, the attribution of several specimens is ambiguous. Statistical parsimony networks were drawn by TCS v1.21 software (Clement et al. 2000) using default settings. NJ trees and inter-population net-distance matrices were calculated in MEGA version 5 (Tamura et al. 2011) based on uncorrected p-distances between haplotypes. The matrix of net-distances between geographical populations was factored using the principal coordinate method as implemented in NTSYS 2.0 (Rohlf 1998)

Results and Discussion
Haplotype network analysis for both genes yielded distinct groupings: two groups for THY (TA, TB) and three groups for SPTBN (SA, SB, SC) (Fig. 2). The NJ trees also contain most of these groupings, but with moderate to low support (Fig. 3).

32


33

Fig. 1. Sampling localities and geographical groups. Samples belonging to different geographical groups are denoted by the following symbols: open square ­ UKR (Ukraine), filled square ­ BRYA (Bryansk region), open circle ­ SAM (Samara region), filled circle ­ KRSN (Krasnoyarsk), open triangle ­ VOLG (Volgograd region), filled triangle ­ ASTR (Astrakhan), open star ­ KAZ (Kazakhstan), filled star ­ UZB (Uzbekistan), cross ­ ungrouped samples.


Fig. 2. A haplotype network generated from phased alleles of THY (A) and SPTBN (B) using statistical parsimony in TCS 1.21 with default settings. Small open circles indicate unsampled intermediate haplotypes. Size of nodes corresponds to the number of specimens of each haplotype. Different symbols represent different population groups (see legend in Fig. 1).

Fig. 3. The NJ tree inferred from reconstructed THY (A) and SPTBN (B) alleles (p-distance). Values at nodes correspond to bootstrap supports over 1000 replicates. Brackets denote allele groups which correspond to those in Fig. 2.

34


Table 1. Net-distance between different species and populations of Eptesicus. Distance values in rows 1 and 2 were calculated as the weighed mean of interpopulation net-distances with weights corresponding to sample sizes net distance (%) E. s. serotinus ­ E. s. turcomanus E. serotinus ­ E. nilssonii within E. nilssonii (western ­ eastern populations) (E. s. serotinus ­ E. s. turcomanus) / (E. serotinus ­ E. nilssonii) THY 0.13 0.43 0.00 0.31 SPTBN 0.70 1.58 0.00 0.44 cytb 0.150 5.770 1.700 0.026

As can be seen in Fig. 2, neither of the two loci can be used to diagnose between E. s. serotinus and E. s. turcomanus. The most common allele groups such as TB and SC are distributed throughout the examined range. Moreover, a number of alleles (THY-Eser2, SPTBN-Eser20, SPTBN-Eser18) are shared by geographically distant eastern and western populations. For example, the haplotype THY-Eser2 is found in Ukraine, in the Bryansk, Volgograd and Krasnodar regions as well as in the Astrakhan region and Kazakhstan. At the same time, the data indicate a certain level of differentiation between eastern (ASTR, KAZ and UZB) and western (KRSN, VOLG, SAM, BRYA, UKR) populations manifested primarily as the difference in haplotype group frequencies (Fig. 4). Thus, the SC and TB groups are obviously more frequent in eastern and western populations, respectively, while the SC group is restricted to the latter. The same pattern of inter-population variation is evident from the results of the principle coordinate analysis (Fig. 5). The eastern populations (ASTR, KAZ, UZB) are clearly separated from most of the western ones (SAM, BRYA, UKR) with VOLG (in case of THY) or KRSN (in case of SPTBN) occupying intermediate positions. It can be concluded that genetic distances between populations roughly correspond to geographical distances, with the distance between adjacent VOLG and ASTR being, however, disproportionately large. In contrast to nuclear genes, the mtDNA shows a little geographical variation. All native (non-introgressed) haplotypes from both western and eastern populations constitute a single shallow clade (Fig. 6). As evident from the values of net-distances (Table 1), there is an apparent

Fig. 4. Distribution of allele groups in different geographical samples. All designations follow Fig. 2.

35


Fig. 5. The plot of the first two principal coordinates (% and %) produced by the analysis of net-distance matrix calculated from THY (above) and SPTBN (below) data.

Fig. 6. The NJ tree inferred from reconstructed cytb haplotype data (p-distance). Values at nodes correspond to bootstrap supports over 1000 replicates.

36


discrepancy in the levels of genetic differentiation between E. s. serotinus and E. s. turcomanus as assessed from the nuclear versus mitochondrial data. Nuclear genes suggest a much higher divergence between the two forms relative to the distance between E. serotinus and E. nilssonii or within the latter. The observed discordance between nuclear and mitochondrial gene markers can be explained by several scenarios. One of them implies that, in correspondence to the mtDNA data pattern, the two forms have diverged quite recently. Then, the apparently excessive variability in nuclear genes might be explained by high ancestral polymorphism. This hypothesis is in agreement with the fact that E. s. serotinus and E. s. turcomanus are very similar morphologically with size, skull shape and pelage coloration being the main discriminative features. At the same time, nuclear data tentatively support subdivision into two distinct groups of populations (despite the fact that their gene pools share many common alleles). Based on that, one can hypothesize that the ancestors of E. s. serotinus and E. s. turcomanus were once separated and, for some time, the two lineages evolved in isolation from each other having differentiated finally to the level of distinct subspecies. At a later stage, a secondary contact zone was formed, presumably as a result of postglacial range expansion. According to this scenario, the pattern of spatial variation in nuclear genes (a steep cline in the Lower Volga region) is best explained by the effect of recent and/or on-going hybridization between the two forms. In this case, the low level of mtDNA differentiation can be accounted for by mtDNA introgression from one subspecies to the other followed by rapid fixation of alien haplotypes (say, due to a selective sweep). Both scenarios remain speculative and should be tested based on a larger number of genes and sampling localities. At the same time, regardless of which hypothesis is correct, the observed pattern of genetic variation indicates a lack of genetic isolation between E. s. serotinus and E. s. turcomanus and, hence, does not support species status for the latter taxon.

Acknowledgements
Sequencing for preliminary molecular analysis was done at the Canadian Centre for DNA Barcoding with administrative support from Paul Hebert (Biodiversity Institute of Ontario, Guelph, Canada). Specimens were provided by D. Smirnov, E. Kozhurina, V. Rossina and V. Matveev. Kazakhstani specimens were collected with invaluable help of the Uralsk Anti-Plague Station staff and especially M. Pak. E. Peregontsev supported our field work in Uzbekistan. The preparattion of the paper was financially supported by the Russian Foundation for Basic Research grants 10-04-00683-a and 11-0400020-a.

References
A i. V., BAnnikoVA A. A., LeBedeV V. s. & kruskop s. V., 2009: Mitochondrial DNA relationships among North Palaearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between Common Serotine and Northern Bat. Zootaxa, 2262: 40­52. BendA p., ruedi M. & AuLAgnier s., 2004: New data on the distribution of bats (Chiroptera) in Morocco. Vespertilio, 8: 13­44. BendA p., AndreAs M., kock d., Lucan r. k., MuncLinger p., noVÀ p., oBuch J., ochMAn k., reiter A., uhrin M. & WienfurtoVÀ d., 2006: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societas Zoologicae Bohemicae, 70: 1­329. BendA p., hAnÀk V. & cerVenÙ J., 2011: Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 9. Bats from Transcaucasia and West Turkestan in collection of the National Museum, Prague. Acta Societas Zoologicae Bohemicae, 75: 159­222. BoBrinskiJ N. A., KuznecoV B. A. & KuzÁkin A. P., 1965: Opredelitel' mlekopitaØih SSSR [Identification Guide to the Mammals of the USSR]. Prosveenie, Moskva, 382 pp (in Russian).
rtyushin

37


cL

M., posAdA D. & crAndALL K., 2000: TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9: 1657­1660. CorBet G. B., 1978: The Mammals of the Palaearctic Region: A Taxonomic Review. Cornell University Press, London & Ithaca, 314 pp. CorBet G. B. & HiLL J. E., 1992: The Mammals of the Indomalayan Region. Oxford University Press, Oxford, 488 pp. eick G. N., JAcoBs D. S. & MAtthee C. A., 2005: A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 22:1869­1886. GAisLer J., 1970: The bats (Chiroptera) collected in Afghanistan by the Czechoslovak Expeditions of 1965­ 1967. Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae Brno, s. n., 4(6): 1­56. GArciA-MudArrA J. L., IBÀßez C. & Juste J., 2009: The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biological Journal of the Linnaean Society, 96: 434­450. hALL T. A., 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclear Acids Symposium Series, 41: 95­98. IBÀßez C., GArciA-MudArrA J. L., Ruedi M., StAdeLMAnn B. & Juste J., 2006: The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica, 8: 227­297. ILJin V. Y., SMirnoV D. G., KrAsiLnikoV D. B. & YAnyAeVA N. M., 2002: Materialy k kadastru rukokrylyh (Chiroptera) Evropejskoj Rossii i smeznyh regionov [Materials to the Cadastre of Bats (Chiroptera) in European Russia and Neighbouring Regions]. Penza State Pedegogical University, Penza, 64 pp (in Russian). Juste J., BendA p., gArciA-MudArrA J. L. & iBÀßez c., 2010: Molecular phylogeny and systematics of Old World serotine bats (Eptesicus, Vespertilionidae). Pp.: 189­190. In: horÀcek I. & BendA P. (eds.): 15th IBRC ­ the Conference Manual. Programme, Abstracts, List of Participants. Volume of Abstracts of the 15th International Bat Research Conference, held in Prague, 23­27 August 2010. LesnickÀ prÀce s.r.o., Kostelec nad CernÙmi lesy, 381 pp. MAyer F., Dietz C. & Kiefer A., 2007: Molecular species identification boosts bat diversity. Frontiers in Zoology, 4(4). OgneV S. I., 1928: Zveri vostocnoj Evropy i severnoj Azii. Tom I [The Mammals of East Europe and North Asia. Volume I]. Gosudarstvennoe Izdatel'stvo, Moskva & Leningrad, 631 pp (in Russian). MAtVeeV V. A., 2003: Systematika rukokrylyh Starogo Sveta po rezultatam issledovaniÁ dispergirovannyh povtorov DNK [The Systematics of the Old World Bats as Inferred from the Examination of the Interspersed DNA Repeats]. Unpubl. PhD Thesis. Moskovskij Gosudarstvennyj Univerzitet, Moskva, 247 pp (in Russian). PAVLinoV I. Y. & RossoLiMo O. L., 1987: Sistematika mlekopitaØih SSSR [Systematics of mammals of the USSR]. Sbornik Trudov Zoologiceskogo MuzeÁ MGU, 25: 1­285 (in Russian) rohLf f. J., 1998: NTSYSpc. Numerical Taxonomy and Multivariate Analysis System Version 2.0 User Guide. Applied Biostatistics Inc. Setauket, New York, 37 pp. sAMBrook J., fritsch E. F. & MAniAtis ., 1989: Molecular Cloning. A Laboratory Manual. 2nd Edition. II Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 1659 pp. SiMMons N. B., 2005: Order Chiroptera. Pp.: 312­529. In: WiLson D. E. & reeder D. M. (eds.): Mammal Species of the World: A Taxonomic and Geographic Reference. Third Edition. Johns Hopkins University Press, Baltimore, 2142 pp. SMirnoV D. G. & YAnyAeVA N. M., 2003: Izmencivost' okraski pozdnogo kozana (Eptesicus serotinus) v central'noi casti areala [To the variability of coloration of the serotine bat (Eptesicus serotinus) from a central part of its distribution range]. Pp.: 205­208. In: AVeriAnoV A. O. & ABrAMson N. I. (eds.): Sistematika, filogeniÁ i paleontologiÁ melkih mlekopitaØih [Systematics, Phylogeny and Paleontology of Small Mammals]. ZISP RAS, St. Peterburg, 246 pp (in Russian, with a summary in English).
eMent

38


A. T. & Xie Y. (eds.), 2008: A Guide to the Mammals of China. Princeton University Press, Princeton, 544 pp. SokoLoV V. E. & Shishkin V. S., 2005: Razvitie otecestvennoj teriologii v XIX veke [Development of the Theriology of Our Country in the XIX Century]. Nauka, Moskva, 324 pp (in Russian). stephens M. & donneLLy P., 2003: A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics, 73: 1162­1169. stephens M., sMith N. J. & donneLL Y. P., 2001: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68: 978­989. StreLkoV P. P. & ILJin V. Y., 1992: Bats of easternmost Europe: distribution and faunal status. Pp.: 193­205. In: horÀcek I. & VohrALÌk V. (eds.): Prague Studies in Mammalogy. Karolinum ­ Charles University Press, Praha, 245 pp. tAMurA K., peterson D., peterson N., stecher G., nei M. & kuMAr S. 2011: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731­2739. S
Mith

received on 13 November 2012

39


Appendix
Sampling localities, vouchers and GB accession numbers

40
site THY AN CYTB AN SPTB GN JX902463 JX902450 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ JX902451 Russia, HakassiÁ JX902575 Russia, TverskaÁ R, Starickij D, Ordino JX902517 Russia, TverskaÁ R, Zubcovskij D, Mozgovo JX902515 Russia, BrÁnskaÁ R, Suzemka D, Nerussa JX902568 Russia, BrÁnskaÁ R, Suzemka D, Nerussa JX902553 Russia, CelÁbinskaÁ R, 30 km NW of Kystym JX902540 Russia, CitinskaÁ R, Aleksandrovskozavodskij D, Kirkira river JX902563 Russia, CitinskaÁ R, Aleksandrovskozavodksij D, Kirkira river JX902516 Russia, CitinskaÁ R, Mogocskij D, Silka river JX902482 Russia, KaliningradskaÁ R, Zelenogradskij D, Romanovo JX902534 Russia, Hanty-MansijakaÁ R, Kondinskij D, Kuminsky, Kuma r JX902506 Russia, Hanty-MansijskaÁ R, Kondinskij D, Kuminsky, Kuma r JX902507 Russia, Hanty-MansijskaÁ R, Kondinskij D, Kuminsky, Kuma r JX902508 Russia, Hanty-MansijskaÁ R, Niznevartovskij D, Korliki, Malye Korliki r JX902500 Russia, Hanty-MansijskaÁ R, Sovetskij D, Verhne-kondinskij NR JX902503 Russia, Hanty-MansijskaÁ R, Sovetskij D, Verhne-kondinskij NR JX902504 Russia, Hanty-MansijskaÁ R, Sovetskij D, Verhne-kondinskij NR JX902505 Russia, Hanty-MansijskaÁ R, Surgut JX902502 Russia, KrasnoÁrskaÁ R, Enisej r, Mirnoe JX902486 Russia, KrasnoÁrskaÁ R, Enisej r, Mirnoe JX902547 Russia, KrasnoÁrskaÁ R, Enisej r, Mirnoe JX902562 Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo JX902509 Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo JX902510 Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo JX902511 Russia, SverdlovskaÁ R, Severouralsk Russia, SverdlovskaÁ R, Severouralsk JX902541 Russia, SverdlovskaÁ R, Severouralsk JX902542 Kazakhstan, Aktobe, Kobda D, Zarsaj JX902572 Kazakhstan, Aktobe, Kobda D, Zarsaj JX902527 Kazakhstan, Aktobe,100 km S of Sol ­ Iletsk road JX902556 Kazakhstan, AtyrauskaÁ R, Inder D, Beket JX902535 JX902444 JX902448 +++ +++ +++ +++ +++ 1 1 1

Abbreviations: AN ­ accession number; D ­ district (okres); GN ­ group number; K ­ region (kraj); NR ­ natural reserve (zapovednik); R ­ region (oblast'); r ­ river; SPTB ­ SPTB presence; TS ­ tissue sample (biopsy); ZIN ­ Zoological Institute RAS, Sankt Petersburg; ZMMU ­ Zoological Museum of the Moscow State University, Moskva

species

coll. ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E.

nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii nilssonii serotinus serotinus serotinus serotinus

ZISP 70784 ZMMU S-170719 ZMMU S-171265 ZMMU S-180219 TS K1106 TS 6CK1 ZMMU S-175949 ZMMU S-175950 ZMMU S-175350 ZMMU S-180233 TS P11_40 TS P11_41 TS P11_42 TS P11_35 TS P11_37 TS P11_38 TS P11_39 TS P11_36 ZMMU S-181985 TS M6 TS M4 TS P11_47 TS P11_48 TS P11_49 TS CK14 TS CK1 TS CK5 ZMMU 1023L74/10 ZMMU 1034L74/10 TS P11_18 ZMMU 1046L-74/10


JX902576 JX902532 JX902533 JX902496 JX902512 JX902581 JX902454 JX902468 JX902469 JX902470 JX902460 +++ +++ +++ +++ +++ +++ +++ +++ JX902584 JX902580 JX902479 JX902579 JX902582 JX902492 JX902558 JX902551 JX902480 JX902559 JX902545 JX902546 JX902548 JX902550 JX902565 JX902564

JX902445 JX902446 JX902447 JX902440

+++ +++ +++ +++ +++

JX902465 JX902466

+++ +++ +++ +++ +++ +++ +++ JX902471 JX902472 JX902464 +++ +++ +++ +++ +++

1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 5 5 5 5 6

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 JX902557 JX902543 JX902560 JX902567 JX902514 JX902577 JX902484 JX902586 JX902554 JX902544 JX902536 JX902487 JX902485 JX902483 JX902570 JX902495 JX902488

E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E.

serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus

ZMMU 1041L-74/10 ZMMU 1042L-74/10 ZMMU 1043L-74/10 ZMMU 1019L-74/10 TS Russ117 ZIN 70095 TS EIK-E.s.t. ZIN 70096 ZMMU S-186653 ZMMU S-186654 ZMMU S-186655 TS P0913 ZMMU S-191983 ZMMU S-190384 TS K1105 ZMMU S-180210 ZMMU S-190385 TS K1101 TS K1102 TS K1103 TS K1104 ZMMU S-183027 ZMMU S-183028 ZMMU S-183029 ZMMU S-186650 ZMMU S-186651 TS SG21.06.05 TS Russ72 TS AAB-Nalchik ZISP 82433 ZMMU S-167376 ZMMU S186656 ZMMU S186657 ZMMU S186649 ZMMU S-180234 TS P11_5 TS P11_3 TS P11_4 TS P11_9 TS P11_11 TS P11_6

Kazakhstan, AtyrauskaÁ R, Inder Lake Kazakhstan, AtyrauskaÁ R, Inder Lake Kazakhstan, AtyrauskaÁ R, Inder Lake Kazakhstan, Zapadno-KazahstanskaÁ R, Syrymskij D, Mirgorodka Russia, Astrahan'skaÁ R Russia, Astrahan'skaÁ R, Baskuncak Russia, Astrahan'skaÁ R, Baskuncak Russia, Astrahan'skaÁ R, Cernobyl'ny Russia, Astrahan'skaÁ R, CernoÁrskij D, Solodniki Russia, Astrahan'skaÁ R, CernoÁrskij D, Solodniki Russia, Astrahan'skaÁ R, CernoÁrskij D, Solodniki Russia, Astrahan'skaÁ R, CernoÁrskij D, Solodniki Russia, Astrahan'skaÁ R, CernoÁrskij D, Solodniki Russia, BrÁnskaÁ R, Brasovskij D Russia, BrÁnskaÁ R, Pogarskij D, Pogar Russia, BrÁnskaÁ R, Suzemskij D, Berezovka Russia, BrÁnskaÁ R, Suzemskij D, Nerussa Russia, BrÁnskaÁ R, Suzemskij D, Nerussa Russia, BrÁnskaÁ R, Suzemskij D, Nerussa Russia, BrÁnskaÁ R, Suzemskij D, Nerussa Russia, BrÁnskaÁ R, Suzemskij D, Nerussa Russia, BrÁnskaÁ R, Surazskij D, LÁlici Russia, BrÁnskaÁ R, Surazskij D, LÁlici Russia, BrÁnskaÁ R, Surazskij D, LÁlici Russia, BrÁnskaÁ R, Surazskij D, LÁlici Russia, BrÁnskaÁ R, Surazskij D, LÁlici Russia, DagestanskaÁ R, ButkazmalÁr Russia, Kabardino-BalkarskaÁ R Russia, Kabardino-BalkarskaÁ R, Nalcik Russia, Krasnodarskij K, KrasnaÁ PolÁna Russia, Krasnodarskij K, KrasnaÁ PolÁna Russia, Krasnodarskij K, Krymskij D, Niznebakanskij Russia, Krasnodarskij K, Krymskij D, Niznebakanskij Russia, Krasnodarskij K, Krymskij D, Niznebakanskij Russia, KaliningradskaÁ R, Zelenogradskij D, Romanovo Russia, SamarskaÁ R, SamarskaÁ Luka, KrestovaÁ PolÁna Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo Russia, SamarskaÁ R, SamarskaÁ Luka, SirÁevo Russia, Tatarstan, Kamsko-Ust'inskij D, Kamskoe Ust'e Russia, VolgogradskaÁ R, Dubovskij D, GornaÁ Prolejka

41


42
site +++ JX902467 JX902452 JX902453 +++ +++ +++ +++ +++ +++ +++ JX902455 JX902456 JX902457 JX902458 JX902459 JX902549 JX902528 JX902524 JX902501 JX902569 JX902494 JX902583 JX902439 JX902438 +++ +++ +++ +++ +++ +++ +++ +++ +++ 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 Russia, VolgogradskaÁ R, Dubovskij D, GornaÁ Prolejka Russia, VolgogradskaÁ R, Dubovskij D, Olene Russia, VolgogradskaÁ R, Dubovskij D, Olene Russia, VolgogradskaÁ R, Dubovskij D, Strel'nosirokoe Russia, VolgogradskaÁ R, Ilovlinskij D, Ereckij Russia, VolgogradskaÁ R, Kamysinskij D Russia, VolgogradskaÁ R, Serafimovicskij D, Kleckij Russia, VolgogradskaÁ R, Serafimovicskij D, Kleckij Russia, Voronez Russia, VoronezskaÁ R, Belogor 'e Ukraine, Harkiv Ukraine, Harkiv Ukraine, Harkiv Ukraine, Kyiv Ukraine, Kyiv Ukraine, Kyiv Ukraine, Kyiv Ukraine, Kyiv Ukraine, Lviv Uzbekistan, FergonskaÁ R, ázÁvanskij D, Tal-Kuduk-Kum Uzbekistan, KaskadarijskaÁ R, Yakkabogskij D Uzbekistan, KaskadarijskaÁ R, Yakkabogskij D JX902490 JX902513 JX902571 JX902491 JX902555 JX902529 JX902531 JX902489 JX902552 JX902493 JX902497 JX902498 JX902499 THY AN CYTB AN SPTB GN

species

coll. ID

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E. E.

serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus serotinus

TS P11_7 ZMMU S-181981 TS P11_13 TS P11_8 ZMMU S-186652 TS DON1 TS KL2 ZMMU S-191978 TS EIKE.s.s. TS P11_10 TS P11_14 TS P11_15 TS P11_16 TS K091L TS K092 TS K093 TS K0951 TS K096L TS P11_17 ZMMU 1001L-58/10 ZMMU 1009L-58/10 TS, 1007L