Несколько лет назад было доказано, что на начальных этапах фотосинтеза в бактериях и растениях работают квантовые эффекты. Энергия поглощенного фотона порождает электронное возбуждение, которое удивительно быстро и эффективно передается в реакционный центр фотосистемы. Этот процесс работает столь слаженно именно за счет квантовой когерентности промежуточных возбуждений. Однако в понимании этого квантового процесса оставались загадки, которые удалось разрешить только сейчас. В двух работах, опубликованных в Nature Physics и Nature Chemistry, было показано, что когерентность эта - не чисто электронная, а вибронная, то есть связывающая в единое целое электронное возбуждение и атомное колебание внутри молекулы. Этот результат не только проясняет фундаментальный механизм фотосинтеза, но и позволяет рассчитывать на то, что опыт природы будет использован для создания еще более эффективных светочувствительных элементов.
Квантовая когерентность при фотосинтезе
Один из самых ярких и изученных эффектов касается механизма фотосинтеза, а точнее, самых первых его этапов. Сложный молекулярный комплекс, используемый бактериями и растениями для улавливания света, поглощает фотон и возбуждает электронную структуру молекулы. Это электронное возбуждение обычно находится вдали от реакционного центра - той части комплекса, которая способна использовать это возбуждение для создания долгоживущего мембранного электрического потенциала или для каких-то иных целей. В результате перед фотосистемой встает задача - передать электронное возбуждение от точки поглощения фотона к точке передачи энергии в реакционный центр (рис. 1).
В принципе, такая передача может происходить и обычным способом. За счет взаимодействия между молекулами электронное возбуждение просто перескакивает с одного островка на другой, пока не достигает нужной точки. Здесь каких-то специальных квантовомеханических эффектов вроде как и не требуется. Проблемы, однако, начинаются тогда, когда пытаешься сопоставить числа. Известно, что эффективность этого процесса близка к 100%, то есть энергия практически каждого поглощенного фотона достигает реакционного центра, а не теряется по пути. Заметьте, это все происходит не в стерильных лабораторных условиях, а при комнатной температуре в реальных молекулах, погруженных в биологический раствор и постоянно подвергающихся хаотическим тепловым столкновениям с окружающими молекулами. Кроме того, было отмечено, что этот процесс протекает поразительно быстро; настолько быстро, что время переброса граничит с минимально разрешенным по законам квантовой механики!
Теоретическое моделирование показало, что при заданном пространственном расположении только специально подобранная квантовая связь между островками способна так быстро передавать возбужденное состояние. 'Квантовость' здесь проявляется в том, что первоначальное возбуждение не прыгает с одного конкретного островка на другой. Оно делокализуется, одновременно идет по нескольким путям, и только под конец вдруг снова собирается вместе в единое возбуждение на нужном островке - это и есть квантовая когерентность. А в 2007 году, с помощью недавно разработанной методики двумерной электронной спектроскопии 2DES (см. ниже), были проведены эксперименты со светочувствительным FMO-комплексом зеленых серобактерий, которые убедительно доказали, что перемещение электронного возбуждения действительно идет в соответствии с квантовыми законами и использует квантовую когерентность.
http://elementy.ru/news/432292