Полная версия этой страницы:
Помогите с задачей
На дифракционную решетку , содержащую 50000 штрихов , нормально падает свет от двойной линии натрия ( лямбда1 = 589 нм , лямбда2 = 589,6 нм ). Общая длина решетки равно 10 см. Какой максимальный порядок спектра можно получить от такой решетки и каково минимальнок расстояние между спктральными линиями , которое способна разрешить эта решетка?
Спектр максимального порядка фотографируется на фотопластинку при помощи объектива с фокусным расстоянием 50см. определить расстояние между линиями дуплета натрия, которое получится на фотоплостине.
Задача была выдана со словами " решается в 2е формулы " ...
Помогите , если кто-нибудь знает.
максимальный порядок спектра-это наибольшее из целых чисел, не превосходящих D/Л, где
D-период решетки
Л-длина волны (полусумма двух длин волн, которые даны)
m-порядок спектра, h-лина решетки
N-число штрихов (D*N=h)
dx-расстояние между линиями на фотопластинке
f-фокусное расстояние
ф-угол дифракции
dф (кажется это называется угловая ширина)
Так вот
dx=f*dф,
dф=Л/(h*Cos(ф))
Cos находится из формулы D*Sinф=m*Л
минимальное расстояние, которое разрешает решетка равно Л/(mN)
Спасибо большое.
Еще пару вопросов:
максисальный порядок спектра = D/Л ?
да, только оно по смыслу должно быть целое
максимальный порядок спекра получился 3 , миним. растояние между спектральными линиями 0,000000000392 м , dx = 0,0000334 м , могут быть такие результаты ( все в метрах )
Я все переводил в метры , даже длины волн.
" Cos находится из формулы D*Sinф=m*Л " , а тут разве Sin не Cos должен быть?
Для просмотра полной версии этой страницы, пожалуйста,
пройдите по ссылке.