Как уже отмечалось, основными взаимодействиями в ферромагнетике являются обменное и магнитодипольное. Важную роль также играет анизотропия ферромагнетиков. Обсудим современную точку зрения на роль указанных здесь факторов различной природы в формировании доменной структуры ферромагнетиков.
При отсутствии доменов, то есть в том случае, когда ферромагнетик намагничен однородно, минимальна сумма We + Wa . Конечно же, предполагается, что намагниченность направлена вдоль кристаллографической оси, отвечающей минимуму Wa . Но при этом должна быть максимальна энергия, связанная с возникновением вокруг образца магнитного поля Wm . Эта энергия для однородного намагниченного образца пропорциональна его объему V : . При больших размерах образца Wm может принимать очень большие значения, а это говорит о том, что однородное намагничивание больших образцов является невыгодным.
Рассмотрим теперь другую крайнюю ситуацию, когда распределение намагниченности неоднородно по всему объему образца. В этом случае можно добиться того, чтобы была равна нулю энергия Wm . Расчет показывает, что в таком состоянии обменная энергия пропорциональна V 1/3. Казалось бы, здесь ситуация выгоднее, чем в предыдущем случае, где было . Однако при неоднородной намагниченности во всем объеме образца в существенной его части намагниченность отклонена от направлений, где минимальна энергия анизотропии, поэтому в данном случае Wa пропорциональна объему образца. Таким образом, в общем случае и состояние с полностью неоднородной намагниченностью не является выгодным. Отметим, что такое состояние тем не менее бывает тогда, когда анизотропия ферромагнетика пренебрежимо мала, в частности у сердечников из магнитомягких материалов в трансформаторах.
Итак, видно, что условия минимальности энергий обмена, анизотропии и размагничивающих полей противоречивы. Как было показано в работе Ландау и Лифшица, на практике реализуется некоторая промежуточная между двумя рассмотренными выше ситуация с образованием доменной структуры. При этом в кристалле можно выделить однородно намагниченные домены, направление намагниченности в каждом из которых совпадает с одной из эквивалентных осей легкого намагничивания (это направления в ферромагнетике, в которых энергия анизотропии минимальна, их может быть несколько!). Домены разделены доменными границами. Размеры и форма доменов определяются конкуренцией рассмотренных выше взаимодействий в доменах и доменных границах.
Оказывается, что доменная структура ферромагнетика определяется в основном тремя факторами. Во-первых, она определяется геометрией образца, то есть его формой и ориентацией кристаллографических осей относительно поверхности. Во-вторых, энергией магнитной анизотропии, то есть наличием энергетически эквивалентных направлений намагниченности. В-третьих, в реальном образце доменная структура сильно зависит от наличия несовершенств или дефектов кристаллической структуры.
Сначала рассмотрим доменную структуру идеальной (без дефектов) одноосной плоскопараллельной пластинки с поверхностью, перпендикулярной оси анизотропии (ось Z ). Будем считать, что пластинка бесконечна вдоль осей X и Y, а ее толщина (размер вдоль оси Z ) равна h. При отсутствии внешнего магнитного поля намагниченность, согласно (2), при < 0 может быть направлена либо вдоль оси Z, либо против нее. Очевидно, что при этом выгодно состояние, в котором будет существовать равное количество доменов с Mz = + M0 и Mz = - M0 , причем они должны чередоваться друг с другом (рис. 2, а). В таком состоянии полная энергия пластинки должна быть минимальна. Эта энергия складывается из энергии размагничивающего поля, которое в основном сосредоточено вблизи поверхности пластинки, и энергии доменных границ.
 |
Рис. 2. Доменная структура ферромагнитной пластинки: а - структура без замыкания магнитного потока, б - структура с замыканием магнитного потока через призматические поверхностные замыкающие домены. L - размер пластинки вдоль осей Y и X ; h - высота пластинки вдоль оси z; d - толщина домена |
Как показали Л.Д. Ландау, Л.М. Лифшиц и Ч. Киттель, по порядку величины энергия размагничивающих полей пропорциональна
где M0 - намагниченность домена, d - толщина домена, S0 = L 2 - площадь пластины в плоскости XY. Ясно также, что энергия доменных границ
, | (4) |
где - энергия доменной границы на единицу поверхности, S1 = Lh - площадь доменной границы, N = L/d - число доменов. Полная энергия пластины может быть записана в итоге в виде
, | (5) |
или
, | (6) |
где V = L 2h - объем пластины. Эта энергия минимальна при
где - характеристическая длина. Оценки показывают, что эта длина порядка 10-5 см. С учетом (7) энергия пластинки запишется как
. | (8) |
В однородно намагниченной пластинке W0 = M02V. Отсюда следует, что отношение
< 1 | (9) |
тогда, когда l0 < h. Итак, получается, что состояние с плоскопараллельной доменной структурой выгоднее энергетически по сравнению с состоянием с однородной намагниченностью при h > см. В этом случае равновесный размер домена, согласно (7), растет с увеличением толщины пластины как . Эта зависимость при не очень большой толщине пластин прекрасно согласуется с экспериментальными результатами. Однако в образцах с очень большой толщиной наблюдается отклонение от данной зависимости. В 1945 году Е.М. Лифшиц теоретически показал, что при большой толщине пластин может начаться ветвление доменов у поверхности образца. В каждом домене могут образовываться клиновидные домены с противоположным направлением намагниченности по сравнению с направлением намагниченности в основном домене. Их размер и количество зависят от толщины образца. Такая структура приводит к смене зависимости ширины домена от толщины образца с на .
Из (9) следует, что при h < l0 , то есть при малой толщине пластин, выгоднее становится состояние с однородной намагниченностью. Это утверждение носит название критерия однодоменности. Данный критерий был сформулирован Френкелем и Дорфманом в 1930 году.
Рассмотренная доменная структура относится к классу доменных структур с незамкнутыми силовыми линиями магнитного поля внутри образца (незамкнутым магнитным потоком). Оказывается, что такая структура не всегда является энергетически выгодной. Как показали Ландау и Лифшиц, в случае одноосного ферромагнетика зачастую более выгодными являются доменные структуры с замкнутым магнитным потоком (рис. 2, б ). Эта модель отличается от рассмотренной выше наличием треугольных замыкающих призматических областей. В результате магнитный поток оказывается замкнутым внутри кристалла. Магнитные полюсы на поверхности при этом исчезают, и вместе с этим обращается в нуль вклад магнитодипольной энергии. Но в то же время увеличивается энергия анизотропии, так как в замыкающих доменах намагниченность перпендикулярна направлению, в котором минимальна энергия анизотропии. Расчет показывает, что такая доменная структура будет выгодней по сравнению с предыдущей в том случае, если так называемый фактор качества образца будет меньше единицы. В противном случае будет реализовываться доменная структура с незамкнутым магнитным потоком.
В кубических ферромагнетиках всегда наблюдаются доменные структуры с призматическими замыкающими доменами. В этом случае и энергия анизотропии (в кубических кристаллах перпендикулярное к выгодному направлению намагниченности также энергетически выгодно), и энергия магнитодипольного взаимодействия практически равны нулю и размеры доменов определяются величиной внутренних механических напряжений, возникающих в ферромагнетике при формировании доменной структуры.
Написать комментарий
|