Асеев Н. Эфферентная копия активности нейронов в пищевом поведении
виноградной улитки Helix pomatia L.
Литературный обзор курсовой работы студента 4-го курса кафедры высшей
нервной деятельности Биологического факультета МГУ. Москва, 2001
Авторские права сохранены. Любое копирование данного текста и/или его
фрагментов без разрешения автора запрещено и преследуется в соответствии
с действующим законодательством РФ.
Содержание В начало...
СПИСОК ЛИТЕРАТУРЫ.
1. Altrup U & Speckmann EJ. Connection of identified neurons in the buccal ganglia of Helix pomatia. Adv Physiol. Sci. 22, Neurotransmitters in Invertebrates, Pergamon Press, Oxford. K.S.-Rozsa (Ed.), 361-378 (1981).
2. Altrup U & Speckmann EJ. Identified neuronal individuals in the buccal ganglia of Helix pomatia. Zh Vyssh Nerv Deiat Im I P Pavlova 42, 1090-1115 (1992).
3. Arnett BC. Feeding and regurgiration: two modes of operation of the buccal central pattern generator in Helisoma. Ph. D. thesis, University of Illinois at Chicago, Chicago IL (1996).
4. Arshavsky YI, Deliagina TG, Meizerov ES, Orlovsky GN & Panchin YV. Control of feeding movements in the freshwater snail Planorbis corneus I. Rhytmic movements of the buccal ganglia. Exp. Brain Res. 70, 310-320 (1988).
5. Arshavsky YI, Deliagina TG, Orlovsky GN & Panchin YV. Control of feeding in pteropod mollusc, Clione limacine. Exp. Brain Res. 78, 387-397 (1989).
6. Balaban PM, Vehovszky A, Maximova OA & Zakharov IS. Effect of 5,7-DHT on the food-aversive conditioning in the snail Helix lucorum. Brain Res. 404, 201-210 (1987).
7. Balaban PM, Zakharov IS & Chistyakova MV. Role of serotonergic cells in aversive learning in Helix. // Neurobiology of invertebrates: transmitters, modulators and receptor // Ed.J.Salanski, K.S.-Rozsa.Budapest: Acad.Kiado, 519-531 (1988).
8. Benjamin PR, McCrohan CR & Rose RM. High order interneurons which initiate and modulate feeding in the pound snail Lymnaea stagnalis. Adv Physiol. Sci. 23, 171-200 (1981).
9. Benjamin PR & Rose RM. Central generation of bursting in the feeding system of the snail, Lymnaea stagnalis. J. Exp. Biol. 80 , 93-118 (1979).
10. Benjamin PR, Rose RM, Slade CT & Lacy MG. Morphology of identified neurones in the buccal ganglia of Lymnaea stagnalis. J. Exp. Biol. 80, 119-135 (1979).
11. Bulloch AGM & Dorsett DA. The functional morphology and motor innervation of the buccal mass of Tritonia hombergi. J. Exp. Biol. 79, 7-22 (1979).
12. Byrne JH. Comparative aspects of neural circuits for inking behavior and gill withdrawal in Aplysia californica. J. Neurophysiol. 45, 98-106 (1981).
13. Chiel HJ, Kupfermann I & Weiss KR. An identified histaminergic neuron can modulate the outputs of buccal-cerebral interneurons in Aplysia via presynaptic inhibition. J. Neurosci. 8, 49-63 (1988).
14. Chiel HJ, Weiss KR & Kupfermann I. Multiple roles of a histaminergic afferent neuron in the feeding behavior of Aplysia. Trends. Neurosci. 13, 223-227 (1990).
15. Cohan CS & Mpitsos GJ. Selective recruitment of interganglionic interneurones during different motor patterns in Pleurobranchaea. J. Exp. Biol. 102, 43-57 (1983).
16. Cohan CS & Mpitsos GJ. The generation of rhitmic activity in a distributed motor system. J. Exp. Biol. 102, 25-42 (1983).
17. Cohen LB. Optical measurement of action potential in invertebrate ganglia. Ann. Rev. Physiol. 51, 527-541 (1989).
18. Davis WJ, Siegler MV & Mpitsos GJ. Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaea. J. Neurophysiol. 36, 258-274 (1973).
19. Elliott CJH & Benjamin PR. Interactions of pattern-generating interneurons controlling feeding in Lymnaea stagnalis. J. Neurophysiol. 54, 1396-1411 (1985).
20. Elliott CJH & Benjamin PR. Interactions of slow oscillator interneuron with feeding pattern-generating interneurons in Lymnaea stagnalis. J. Neurophysiol. 54, 1412-1421 (1985).
21. Elliott CJH & Vehovszky A. Polycyclic neuromodulation of the feeding rhytm of the pond snail Lymnaea stagnalis by octopaminergic interneuron, OC. Brain Res. 887, 63-69 (2000).
22. Gelperin A, Chang JJ & Reingold SC. Feeding motor program in Limax. I. Neuromuscular correlates and control by chemosensory input. J. Neurobiol. 9, 285-300 (1978).
23. Getting PA, Lennard PR & Hume RI. Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J. Neurophysiol. 44, 151-164 (1980).
24. Gillette R & Davis WJ. The role of the Metacerebral Giant Neuron in Feeding Behavior of Pleurobranchaea. J. Comp. Physiol. 116, 129-159 (1977).
25. Gillette R, Huang RC, Hatcher N & Moroz LL. Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. PNAS. 97, 3585-3590 (2000).
26. Gillette R, Kovac MP & Davis WJ. Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199, 798-801 (1978).
27. Gillette R, Kovac MP & Davis WJ. Control of Feeding Motor Output by Paracerebral Neurons in Brain of Pleurobranchaea californica. J. Neurophysiol. 47, 885-908 (1982).
28. Granzow B & Kater SB. Identified higher-order neurons controlling the feeding motor program of Helisoma. Neurosci. 2, 1049-1063 (1977).
29. Haarmeier,T., Altrup,U. & Speckmann,E.J. Attenuation of a voltage-dependent sodium current by GABA (identified neurons, buccal ganglia, Helix pomatia). Brain Res. 663, 131-139 (1994).
30. Harris-Warrick RM & Marder E. Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14, 39-57 (1991).
31. Hurwitz I, Kupfermann I & Susswein AJ. Different roles of neurons B63 and B64 that are active during the protraction phase of buccal motor programs in Aplisia californica. J. Neurophysiol. 78, 1305-1319 (1997).
32. Jing J & Gillette R. Neuronal elements that mediate escape swimming and suppress feeding behavior in the predatory sea slug Pleurobranchaea. J. Neurophysiol. 74, 1900-1910 (1995).
33. Jing J & Gillette R. Escape Swim Network Interneurons Have Diverse Roles in Behavioral Switching and Putative Arousal in Pleurobranchaea. J. Neurophysiol. 83, 1346-1355 (2000).
34. Kandel,E.R. & Tauc,L. Input organization of two symmetrical giant cells in the snail brain. J. Physiol. 183, 269-286 (1966).
35. Kaneko CR, Merickel M & Kater SB. Centrally programmed feeding in Helisoma: identification and chracteristics of an electrically coupled premotor neuron network. Brain Res. 146, 1-21 (1978).
36. Kater SB. Feeding in Helisoma trivolvis. The morphological and physiological bases of a fixed action pattern. Am. Zool. 14, 1017-1036 (1974).
37. Kater SB & Rowell CHF. Integration of sensory and centrally programmed components in generation of cyclical feeding activity of Helisoma trivolvis. J. Neurophysiol. 36, 142-155 (1973).
38. Katz PS & Frost WN. Intrinsic neuromodulation: altering neuronal circuits from within. Trends. Neurosci. 19, 54-61 (1996).
39. Kovac MP & Davis WJ. Neural mechanism underlying behavioral choice in Pleurobranchaea. J. Neurophysiol. 43, 469-487 (1980).
40. London JA, Zecevic D & Cohen JL. Simultaneous optical recording of activity from many neurons during feeding in Navanax. J. Neurosci. 7, 649-661 (1987).
41. McCrohan CR. Property of ventral cerebral neurones involved in the feeding system of the snail, Lymnaea stagnalis. J. Exp. Biol. 108, 257-272 (1984).
42. McCrohan CR & Benjamin PR. Pattern of activity and axonal projections of the cerebral giant cells of the snail, Lymnaea stagnalis. J. Exp. Biol. 85, 149-168 (1980).
43. McCrohan CR & Benjamin PR. Synaptic relationship of the cerebral giant cells with motoneurones in the feeding system of Lymnaea stagnalis. J. Exp. Biol. 85, 169-186 (1980).
44. McCrohan CR & Croll RP. Characterization of an identified cerebrobuccal neuron containing the neuropeptide APGWamide (Ala-Pro-Gly-Trp-NH2) in the snail Lymnaea stagnalis. Invert. Neurosci. 2, 273-282 (1997).
45. Morton,D.W., Chiel,H.J., Cohen,L.B. & Wu,J.Y. Optical methods can be utilized to map the location and activity of putative motor neurons and interneurons during rhythmic patterns of activity in the buccal ganglion of Aplysia [published erratum appears in Brain Res 1992 Feb 21;573(1):179]. Brain Res. 564, 45-55 (1991).
46. Murphy AD. The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog. Neurobiol. 63, 383-408 (2001).
47. Norekian TP. GABAergic excitatory synapses and electrical coupling sustain prolonged disharges in the prey capture neuronal network of Clione limacina. J. Neurosci. 19, 1863-1875 (1999).
48. Norekian TP & Satterlie RA. Whole body withdrawal circuit and its involvement in the behavioral hierarchy of the mollusk Clione limacina. J. Comp. Physiol. [A]. 177, 41-53 (1995).
49. Pentreath VW, Berry MS & Osborne NN. The serotonergic cerebral cells in gastropods. // Biology of serotonergic transmission. // Edited by N.N. Osborne. John Wiley & Sons, Ltd. 457-513 (1982).
50. Perrins R & Weiss KR. Compartmentalization of information processing in an Aplysia feeding circuit interneuron through membrane properties and synaptic interactions. J. Neurosci. 18, 3977-3989 (1998).
51. Peters M & Altrup U. Motor organization in pharynx of Helix pomatia. J. Neurophysiol. 52, 389-409 (1984).
52. Quinlan EM & Murphy AD. Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons. J. Neurophysiol. 75, 561-574 (1996).
53. Richmond JE, Bulloch AGM, Bauce LG & Lukowiak K. Evidence for the presence, syntesis, immunoreactivity and uptake of GABA in the nervous system of the snail, Helisoma trivolvis. J. Comp. Neurol. 307, 131-143 (1991).
54. Rose RM & Benjamin PR. The relationship of the central motor pattern to the feeding cycle of Lymnaea stagnalis. J. Exp. Biol. 80, 137-163 (1979).
55. Schulze N, Speckmann EJ, Kunlmann D & Caspers H. Topography and bioelectrical properties of identifiable neurons in the buccal ganglia of Helix pomatia. Neurosci. Lett. 1, 277 (1975).
56. Sinha SR & Saggau P. Ch.16: Optical Recording from Populations of Neurons in Brain Slices. // Modern Tehniques in Neuroscience. Research CD-ROM. // Ed.: U.Windhorst; H.Johansson Springer, 459-486 (1999).
57. Staras K, Kemenes G & Benjamin PR. Pattern-generating role for motoneurons in a rhytmically active neuronal network. J. Neurosci. 18, 3669-3688 (1998).
58. Straub VA & Benjamin PR. Extrinsic Modulation and Motor Pattern Generation in a Feeding Network: a Cellular Study. J. Neurosci. 21, 1767-1778 (2001).
59. Teyke T, Weiss KR & Kupfermann I. An identified neuron (CPR) evokes neuronal responses reflecting food arousal in Aplysia. Science 247, 85-87 (1989).
60. Vehovszky A, Hiripi L & Elliott CJH. Octopamine is the synaptic transmitter between identified neurons in the buccal feeding network of the pond snail Lymnaea stagnalis. Brain Res. 867, 188-199 (2000).
61. Weiss KR, Cohen JL & Kupfermann I. Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) in Aplysia. J. Neurophysiol. 41, 181-203 (1978).
62. Wenner P, Tsau Y, Cohen LB, O'Donovan MJ & Dan Y. Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics. J. Neurosci. Methods 70, 111-120 (1996).
63. Willows AOD. Physiological basis of feeding behavior in Tritonia diomeda. II. Neuronal mechanisms. J. Neurophysiol. 44, 849-861 (1980).
64. Yeoman MS, Brierley MJ & Benjamin PR. Central Pattern Generator Interneurons Are Target for the Modulatory Serotonergic Cerebral Giant Cells in the Feeding System of Lymnaea. J. Neurophysiol. 75, 11-25 (1996).
65. Yeoman MS, Kemenes G, Benjamin PR & Elliott CJH. Modulatory Role for the Serotonergic Cerebral Giant Cells in the Feeding System of the snail, Lymnaea. II.Photoinactivation. J. Neurophysiol. 72, 1372-1382 (1994).
66. Yeoman MS, Pieneman AW, Ferguson GP, Ter-Maat A & Benjamin PR. Modulatory Role for the Serotonergic Cerebral Giant Cells in the Feeding System of the snail, Lymnaea. I. Fine wire recording in the intact animal and pharmacology. J. Neurophysiol. 72, 1357-1371 (1994).
67. Yeoman MS, Vehovszky A, Kemenes G, Elliott CJH & Benjamin PR. Novel Interneuron Having Hybrid Modulatory-Central Pattern Generator Properties in the Feeding System of the Snail, Lymnaea stagnalis. J. Neurophysiol. 73, 112-124 (1995).
68. Галанина ГН, Захаров ИС, Максимова ОА и Балабан ПМ. Роль гигантской серотонинсодержащей клетки церебрального ганглия виноградной улитки в организации пищедобывательного поведения. Журнал высшей нервной деятельности 36, 110-115 (1986).
69. Кэндел Э. Клеточные основы поведения. М: "Мир" 387-398 (1980).
Написать комментарий
|