Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1157647&s=
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 19:24:45 2016
Кодировка: Windows-1251
Научная Сеть >> В.М. Глазер. Генетическая рекомбинация без гомологии: процессы, ведущие к перестройкам в геноме
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   Зарегистрируйтесь на нашем сервере и Вы сможете писать комментарии к сообщениям Обратите внимание!
 
  Наука >> Биология >> Генетика | Обзорные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

Обзорные статьиВ.М. Глазер. Конверсия гена

Обзорные статьиВ.А. Гвоздев. Подвижная ДНК эукариот. Часть 2. Роль в регуляции активности генов и эволюции генома

Обзорные статьиВ.М. Глазер. Конверсия гена: (1)

Генетическая рекомбинация без гомологии: процессы, ведущие к перестройкам в геноме
В. М. ГЛАЗЕР
Московский государственный университет им. М.В. Ломоносова

Предыдущая статья была посвящена механизмам генетической рекомбинации, совершающейся на основе гомологии между рекомбинирующими ДНК. Здесь будут рассмотрены процессы рекомбинации, либо использующие очень ограниченную гомологию между рекомбинирующими ДНК, либо вообще обходящиеся без нее. Они внесли существенный вклад в эволюцию генетического материала, но наиболее ярко их биологическое значение проявляется в онтогенетических перестройках геномов, играющих важную роль в жизнедеятельности вирусов, бактерий и эукариот. Эти рекомбинационные системы - сайт-специфическая рекомбинация, транспозиции и незаконная рекомбинация - в корне отличаются от гомологичной рекомбинации по механизмам и наборам контролирующих их генов.

САЙТ-СПЕЦИФИЧЕСКАЯ РЕКОМБИНАЦИЯ
Сайт-специфическая рекомбинация происходит между специфическими последовательностями ДНК в пределах очень коротких участков гомологии, обычно 15-30 п.н. Она широко распространена у прокариот и низших эукариот. Сайт-специфическая рекомбинация обеспечивает интеграцию (включение) ДНК умеренных фагов в хромосомы бактерий, инверсию (изменение ориентации) отдельных участков ДНК в хромосомах бактерий и бактериофагов и в так называемой 2-микронной плазмиде дрожжей, а также другие процессы, играющие важную роль в циклах развития фагов и бактерий. Редкий, если не единственный, но зато жизненно важный пример сайт-специфической рекомбинации у многоклеточных животных - перестройки в последовательностях ДНК, кодирующих иммуноглобулины, - белковые молекулы, распознающие тот или иной антиген при иммунном ответе у позвоночных.

Рис. 1. Схема сайт-специфической рекомбинации у фага лямбда. Линии соответствуют цепям ДНК, две параллельные линии - дуплексу. Синим цветом изображена ДНК фага, красным - часть кольцевой хромосомы E. coli. P, P' и B, B' - последовательности сайтов attP и attB соответственно, окружающие центральную часть (О). A, J, N и R - гены фага. Полустрелки, идущие вниз, указывают направление процесса интеграции фага; полустрелки, идущие вверх, - направление вырезания (эксцизии) профага. а - линейная (вирионная) ДНК фага; б - ДНК фага после инфекции в клетку E. coli замыкается в кольцо, и находящийся в ней сайт attP вступает в рекомбинацию с сайтом attB в хромосоме бактерии. Кроссинговер показан знаком Х; в - продукт рекомбинации - профаг в составе хромосомы бактерии; г - запись процесса рекомбинации в общем виде. Остальные пояснения даны в тексте

Рассмотрим некоторые из самых известных примеров сайт-специфической рекомбинации. Наиболее изучена она у умеренного бактериофага лямбда. После инфекции в клетку E. coli линейная вирионная двуцепочечная ДНК фага (рис. 1, а) замыкается в кольцо (рис. 1, б ) за счет имеющихся на ее концах комплементарных одноцепочечных последовательностей. Последующее развитие фага может идти по пути интеграции в хромосому бактерии между генами gal и bio (рис. 1, в). Интеграция происходит путем рекомбинации между особыми att (attachment)-сайтами: attP в хромосоме фага и attB в хромосоме бактерии. Интегрированный фаг называется профагом. Он фланкирован рекомбинантными сайтами attL (левый) и attR (правый). Вырезание (эксцизия) профага из хромосомы происходит в обратной последовательности событий. Запись реакций в обобщенном виде представлена на рис. 1, г. Из нее видно, что в интегративной рекомбинации участвуют сайты attP и attB, продукт фагового гена int (интеграза) и белок IHF (Integration Host Factor) E. coli. Для эксцизии необходимы сайты attL и attR, те же белки и еще продукт фагового гена xis. Сайты attP и attB неравноценны. Первый устроен сложно. При размере около 270 п.н. он состоит из центральной части О и двух примыкающих к ней частей: P и P'. Внутри сайта attP располагаются участки связывания с интегразой и белками IHF и Xis. Сайт attB устроен проще. Его размер всего 23 п.н., гомология с attP ограничена центральной частью из 15 п.н., в которой имеются два сайта связывания с интегразой. Интеграза является топоизомеразой типа I, но только сайт-специфической. В результате образования комплекса интегразы с attP-сайтом и белком IHF формируется сложно уложенная нуклеопротеидная структура, которая захватывает сайт attB. В этой структуре последовательности ДНК att-сайтов связываются за счет взаимодействий между субъединицами интегразы и затем подвергаются согласованному расщеплению.
Как и все топоизомеразы I, интеграза делает разрыв в одной цепи каждого дуплекса, и в месте разрыва образуются 3'-P и 5'-OH-концы ДНК. Фермент ковалентно связывается с 3'-P-концом, благодаря чему энергия разорванной фосфодиэфирной связи сохраняется, и для последующего замыкания разрыва, осуществляемого тем же ферментом, не требуется дополнительной энергии. Этим топоизомеразы отличаются от ДНК-лигаз, использующих для сшивания концов цепей ДНК энергию, освобождающуюся за счет гидролиза соединений типа АТФ. Поэтому разрыв полинуклеотидной цепи, образуемый топоизомеразой, называют "временным" в отличие от фиксированных одноцепочечных разрывов, производимых эндонуклеазами. При этом интеграза может осуществлять рекомбинацию между att-сайтами путем замыкания фосфодиэфирной связи с 5'-OH-концом из другого дуплекса, то есть путем обменов 5'-OH-концами. Такая рекомбинация между дуплексами, не требующая дополнительной энергии, называется консервативной.
На рис. 2 изображены только основные детали сложного молекулярного процесса интегративной рекомбинации. В упрощенном виде его можно представить следующим образом: сначала интеграза производит обмен между двумя цепями одинаковой полярности. При этом разрыв и воссоединение цепей происходят между строго определенными нуклеотидами в центральной части att-сайтов (рис. 2, а). В результате возникает структура, физически соответствующая полухиазме Холлидея (рис. 2, б). Затем на расстоянии 7 п.н. происходит вторая пара обменов между двумя другими цепями, не участвовавшими в первом обмене. Вторая пара обменов приводит к интеграции фага (рис. 2, в); интегрированный профаг фланкирован рекомбинантными сайтами attL и attR, как это уже было показано на рис. 1, в. Предполагается, что для катализа этой реакции необходимы четыре субъединицы интегразы, связанные в att-сайтах.

Рис. 2. Схема двух основных этапов интегративной рекомбинации у фага лямбда: а - нуклеотидная последовательность att-сайтов в центральной части O. Вертикальные черточки указывают сайты разрывов, предшествующих обмену цепями между attP и attB; б - промежуточная структура, образовавшаяся после обмена между двумя цепями ДНК одинаковой полярности в att-сайтах. Физически она соответствует полухиазме Холлидея; в - продукт завершенной рекомбинации. Остальные пояснения даны в тексте

Важно отметить, что все изученные ферменты, непосредственно осуществляющие сайт-специфическую рекомбинацию у фагов и бактерий, а также белок, катализирующий инверсию в 2-микронной плазмиде дрожжей, являются сайт-специфическими топоизомеразами I. По уровню гомологии их аминокислотных последовательностей и механизму катализирумых реакций их разделяют на две группы: представителями первой группы являются уже рассмотренная нами интеграза фага лямбда, интегразы других умеренных фагов и белок, катализирующий сайт-специфическую рекомбинацию в плазмиде дрожжей, ко второй относят инвертазы бактерий и фагов и некоторые другие ферменты сайт-специфической рекомбинации.
Сайт-специфическая рекомбинация, катализируемая ферментами второй группы, происходит по более простой схеме, чем в случае интеграз. Рассмотрим ее на примере инвертазы фага Mu. В центральной части своей хромосомы фаг содержит особый сегмент G размером около 3 т.п.н. Сегмент имеет на концах инвертированные (обращенные) повторы длиной около 30 п.н. В каждом повторе, в свою очередь, имеется специфический рекомбинационный сайт. Инвертаза проводит рекомбинацию между этими сайтами (рис. 3, а). Четыре субъединицы фермента, по одной субъединице на каждую цепь ДНК, делают "временные" разрывы в обеих цепях каждого рекомбинационного сайта, то есть одновременно расщепляют все четыре цепи, образуя 5'-P и 3'-OH-концы. При этом разрывы цепей в каждом дуплексе происходят на расстоянии 2 п.н., так что 3'-конец как бы выступает. Фермент ковалентно связывается с 5'-P-концами. Затем одна часть первого дуплекса меняется местами с такой же частью второго дуплекса, после чего восстанавливаются фосфодиэфирные связи во всех четырех цепях.
Приведенная реакция, как и большинство из процессов, осуществляемых инвертазами у бактерий кишечной группы и их фагов, входит в особую систему сайт-специфических инверсий ДНК, получившую название Din (от DNA inversions). Помимо фага Mu сайт-специфические инверсии обнаружены у умеренного фага P1 и энтеробактерий E. coli, Salmonella typhimurium, Citrobacter freundii. Инверсии специальных сегментов хромосом, ограниченных обращенными повторами ДНК длиной около 30 п.н., происходят с высокой частотой путем рекомбинации в этих повторах. Меняя ориентацию определенных генов относительно их промоторов, инверсии приводят к включению одних генов и выключению других. Это один из примеров регуляции работы генов путем специфических перестроек ДНК. Они имеют приспособительное значение. Например, у S. typhimurium инверсии сегмента H переключают гены H1 и H2, кодирующие разные типы белка флагеллина, из которого построены жгутики, что позволяет этой патогенной для мышей бактерии менять поверхностный антиген и тем самым ускользать от действия иммунной системы хозяина. У фагов инверсии переключают гены, кодирующие разные белки хвостовых отростков, что приводит к смене хозяев - бактерий, в которых может размножаться фаг.

Рис. 3. Схема сайт-специфической инверсии сегмента G в ДНК фага Mu: а - механизм реакции обмена цепями ДНК. Две линии изображают дуплекс ДНК. Инвертируемый сегмент показан зелеными линиями, два сайта в обращенных повторах на концах сегмента G, между которыми происходит обмен, выделены красным и синим цветом. Показана только часть нуклеотидной последовательности обращенных повторов, где происходит рекомбинация. Буквы A, G, C и T обозначают реальные нуклеотиды в сайте обмена. Сайты разрывов обозначены ступенчатыми пунктирными линиями. Для наглядности "временные" разрывы цепей ДНК показаны сплошными ступенчатыми линиями. Четыре субъединицы инвертазы, осуществляющие рекомбинацию, на рисунке не показаны; б - переключение генов хвостового отростка фага Mu в зависимости от ориентации сегмента G. Сегмент G изображен зелеными линиями, треугольники представляют его концевые обращенные повторы. Стрелки под изображением ДНК указывают направления транскрипции генов, а P - положение промоторов. Остальные пояснения даны в тексте

В качестве конкретного примера вернемся к системе инверсий G-сегмента у фага Mu (рис. 3, б ). Сегмент содержит четыре гена: U, U ', Sv и Sv '. Два последних представлены в сегменте только своими вариабельными частями, тогда как их общая константная часть Sc вместе с промотором P примыкает к сегменту слева. Справа от сегмента G расположен ген инвертазы gin. При одной ориентации сегмента (G+) транскрибируются гены Sv и U, при противоположной ориентации (G-) функционируют гены Sv' и U '. В первом случае фаг размножается на E. coli B, E. coli K12 и S. typhimurium, во втором - на E. coli C, Citrobacter freundii, Shigella sonnei и др. Следует особо отметить, что все работающие в системе Din инвертазы фагов и бактерий заменяют друг друга в рекомбинации in vitro. Это обусловлено их общим происхождением: инвертазы гомологичны между собой на 60-70% и их рекомбинационные сайты в обращенных повторах на концах инвертируемых сегментов также гомологичны.
Завершая описание сайт-специфической рекомбинации отметим ее принципиальные отличия от гомологичной рекомбинации. В случае последней молекулы ДНК узнают друг друга путем прямого сопоставления их последовательностей через посредство рекомбиназ типа белка RecA. Для этого в ДНК вводятся специальные пресинаптические повреждения, высвобождающие одноцепочечные участки ДНК, что и лежит в основе узнавания гомологичных последовательностей. Напротив, при сайт-специфической рекомбинации главную роль в синапсисе играет взаимное узнавание белков, связанных с рекомбинационными сайтами. Эти сайты совсем короткие, и гомология между ними непосредственно для синапсиса несущественна. Она важна для связывания со специфическими белками и для обмена цепями между сайтами.

Далее...


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования