Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mmonline.ru/forum/read/7/18414/
Дата изменения: Sat Feb 19 18:58:37 2011
Дата индексирования: Sat Feb 19 18:58:37 2011
Кодировка: Windows-1251
MMOnline | Форумы | Разное | Кто умееть решать такое уравнение?

Кто умееть решать такое уравнение?

Автор темы Izubr 
19.06.2001 16:54
Izubr
Кто умееть решать такое уравнение?
y'(x^2)-y^2=x
(без рядов - решение через эл. функции!)
02.07.2001 05:54
sergei
ODE
%This is a plain-TEX file.
Let us introduce the variable
$t={1\over x}$:
$$x^2\, y_{x}-y^2=x\, \Longrightarrow\ y_{t}+y^2+{1\over t}=0\ .$$
This is the so-called Riccati equation.
It is equivalent to a linear ODE. Indeed, if
$$\Psi=e^{\int^t dt\, y}\, , $$
then
$$\Psi_{tt}+{\Psi\over t}=0\ .$$
The last can be transformed to the Bessel equation:
$$\Psi=z\, F(z)\, ,\ \ z=2\sqrt{t}\ \ \Longrightarrow\
F_{zz}+{F_{z}\over z}+\Big(\, 1-{1\over z^2}\,\Big)=1\ .$$
Hence
$$F(z)=C_1\ J_1(z)+C_2\ Y_1(z)\ ,$$
where
$J_1(z),\ Y_1(z)$ are conventional Bessel functions.
($C_{1,2}$ are integration constants).
Now one has,
$$\Psi(t)=const\, \sqrt{t}\
\big(\, J_1(2\sqrt{t})+ c\ Y(2\sqrt{t})\, \big)\ .$$
Here $c$ is a constant.
Finally,
$$y={\Psi_t\over \Psi}=\sqrt{x}\ \ \
{J_0({2\over \sqrt{x}})+c\,Y_0({2\over \sqrt{x}})\over
J_1({2\over \sqrt{x}})+c\, Y_1({2\over \sqrt{x}}) }\ .$$
Here I use the identities,
$$J_1'(z)=J_0(z)-{J_1(z)\over z}\, ,\ \ \ \
Y_1'(z)=Y_0(z)-{Y_1(z)\over z}\ .$$

All the best.
\end
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти