|
НЕПОЗНАННОЕ СЕРДЦЕ
A. И. Гончаренко, врач-кардиолог, член-корреспондент МАИЭН, Москва
В сердце имеется семь мозгов - упадхи и символы семи Иерархий. Блаватская Е. П.
Индусы тысячи лет поклоняются сердцу как обители души. Английский врач Вильям Гарвей, открывший кругохождение крови, сравнивал сердце с 'солнцем микрокосма, подобно тому, как Солнце можно назвать сердцем мира'. Но, с развитием научных знаний, европейские ученые приняли взгляд итальянского натуралиста Бореллн, уподобившего функции сердца работе 'насоса бездушного'. Анатом Бернулли в России и французский врач Пуазейль, в опытах с кровью животных в стеклянных трубках, вывели законы гидродинамики и поэтому с полным правом перенесли их действие и на кровообращение, чем упрочили представление о сердце как гидравлическом насосе. А физиолог И.II.Сеченов вообще уподобил работу сердца и сосудов 'сточным каналам Петербурга'. С тех пор и до настоящего времени эти утилитарные убеждения находятся в основе фундаментальной физиологии: 'Сердце состоит из двух отдельных насосов: правого и левого сердца. Правое сердце прокачивает кровь через легкие, а левое - через периферические органы' [I]. Кровь, поступающая в желудочки, основательно смешивается, и сердце одномоментными сокращениями выталкивает одинаковые объемы крови в сосудистые разветвления большого и малого круга. Количественное распределение крови зависит от диаметра подводящих к органам сосудов и действия в них законов гидродинамики [2, 3]. Так описывается в настоящее время общепринятая академическая схема кровообращения. Несмотря на, казалось бы, столь очевидную функцию, сердце остается самым непредсказуемым и уязвимым органом. Это заставило ученых многих стран взяться за дополнительные исследования сердца, стоимость которых в 1970-е годы превзошла затраты полетов астронавтов на Луну. Сердце разобрали до молекул, однако, никаких открытий в нем сделано не было, и тогда кардиологи вынуждены были признать, что сердце как 'механическое устройство' возможно реконструировать, заменять чужеродным или искусственным. Последним достижением в этой области явился насос Дебейки-НАСА, способный вращаться со скоростью 10 тыс. оборотов в минуту, 'незначительно разрушающий элементы крови' [4], и принятие английским парламентом разрешения о пересадке людям свиных сердец. На эти манипуляции с сердцем в 1960-е годы выдал индульгенцию Папа Пий XII, заявив, что 'пересадка сердца не противна воле божьей, функции сердца чисто механические'. А Папа Павел IV уподобил трансплантацию сердца акту 'микрораспятия'. Пересадка сердца и его реконструкция стали мировыми сенсациями XX века. Они оставили в тени накопленные физиологами на протяжении веков факты гемодинамики, которые в корне противоречили общепринятым представлениям о работе сердца и, оказавшись непонятыми, не вошли ни в один из учебников физиологии. О том, что 'сердце как насос, не способно распределять кровь различного состава на отдельные потоки по одному и тому же сосуду', еще Гарвею писал французский врач Риолан [5]. С тех пор количество подобных вопросов продолжало множиться. Например: емкость всех сосудов человека имеет объем 25-30 литров, а количество крови в организме всего 5-6 литров [6]. Каким образом больший объем заполняется меньшим? Утверждается, что правое и левое желудочки сердца, сокращаясь синхронно, выталкивают одинаковый объем крови. На самом деле, их ритм [7] и количество выбрасываемой крови не совпадает [8]. В фазу изометрического напряжения в разных местах полости левого желудочка давление, температура, состав крови всегда различны [9], чего никак не должно быть, если сердце - гидравлическая помпа, в которой жидкость равномерно перемешивается и во всех точках своего объема имеет одинаковое давление. В момент выталкивания крови левым желудочком в аорту, по законам гидродинамики, пульсовое давление в ней должно быть больше, чем в этот же момент в периферической артерии, однако, все выглядит наоборот, и кровоток направлен в сторону большего давления [10]. Из любого нормально работающего сердца кровь периодически почему-то не поступает в отдельные крупные артерии, и на их реограммах регистрируются 'пустые систолы', хотя по той же гидродинамике она должна по ним распределяться равномерно [11]. До сих пор не ясны механизмы регионарного кровообращения. Суть их в том, что независимо от общего давления крови в организме, скорость ее и количество, протекающие через отдельный сосуд, может вдруг увеличиваться или уменьшатьѓся в десятки раз, в то время как в соседнем органе кровоток остается неизменным. Например: коли-чество крови через одну почечную артерию увелиѓчивается в 14 раз, а в ту же секунду в другой почечѓной артерии и с таким же диаметром оно не меняется [12]. В клинике известно, что в состоянии коллаптоидного шока, когда общее давление крови у больноѓго падает до нуля, в сонных артериях оно остается в пределах нормы - 120/70 мм рт. ст. [13]. Особенно странно с точки зрения законов гидродинамики выглядит поведение венозного кровотока. Направление его движения идет от низкого в сторону более высокого давления. Этот парадокс известен сотни лет и получил название vis a tegro (движение против тяжести) [14]. Он заключается в следующем: у человека в положении стоя на уровне пупка определяется индифферентная точка, в которой давление крови равно атмосферному или чуть больше. Теоретически, выше этой точки кровь не должна подниматься, поскольку над нею в полой вене содержится еще до 500 мл крови, давление в которой доходит до 10 мм рт. ст. [15]. По законам гидравлики у этой крови нет никаких шансов попасть в сердце, но кровоток, не обращая внимания на наши арифметические затруднения, ежесекундно наполняет правое сердце ее необходимым количеством. Непонятно, почему в капиллярах покоящейся мышцы за несколько секунд скорость кровотока меняется в 5 и более раз, и это при том, что капилляры не могут самостоятельно сокращаться, в них нет нервных окончаний и давление в подводящих артериолах сохраняется стабильным [16]. Нелогично выглядит феномен повышения количества кислорода в крови венул после ее протекания через капилляры, когда кислорода в ней почти не должно оставаться [17]. И совершенно неправдоподобным представляется селективный отбор отдельных клеток крови из одного сосуда и целенаправленное их движение в определенные ответвления. Например, старые крупные эритроциты с диаметром от 16 до 20 микрон из общего потока в аорте избирательно поворачивают только в селезенку [18], а молодые мелкие эритроциты с большим количеством кислорода и глюкозы, и к тому же более теплые, направляются в мозг [19]. Плазма крови, поступающая в оплодотворенную матку, содержит белковых мицел на порядок больше, чем в соседних артериях в этот момент [20]. В эритроцитах интенсивно работающей руки гемоглобина и кислорода больше, чем в неработающей [21]. Эти факты свидетельствуют о том, что в организме нет никакого смешения элементов крови, а идет целенаправленное, дозированное, адресное распределение ее клеток на отдельные потоки в зависимости от нужд каждого органа. Если сердце лишь 'бездушный насос', то как же совершаются все эти парадоксальные явления? Не зная этого, физиологи при расчетах кровотока упорно рекомендуют использовать известные математические уравнения Бернулли и Пуазейля [22], хотя их применение приводит к ошибке в 1000%! Таким образом, законы гидродинамики, открытые в стеклянных трубках с протекающей в них кровью, оказались неадекватны всей сложности явлении в сердечно-сосудистой системе. Однако за отсутствием иных, они до сих нор определяют физические показатели гемодинамики. Но что интересно: как только сердце заменяют на искусственное, донорское или реконструируют, то есть когда оно принудительно переводится на четкий ритм механического робота, тогда в сосудистой системе исполняется действие сил этих законов, но в организме наступает гемодинамический хаос, извращающий регионарный, селективный кровоток, приводящий к множественному тромбозу сосудов [23]. В центральной нервной системе искусственное кровообращение повреждает мозг, вызывает энцефалопатию, депрессию сознания, изменение поведения, разрушает интеллект, ведет к припадкам, нарушению зрения, инсульту [24]. Стало очевидно, что так называемые парадоксы на самом деле - это норма нашего кровообращения. Следовательно, в нас: действуют какие-то иные, еще неизвестные механизмы, которые и создают проблемы для укоренившихся представлений о фундаменте физиологии, в основании которой вместо камня оказалась химера: Создаетѓся впечатление, что некий мистификатор, зная истину, на протяжении веков преднамеренно скрывал эти факты, целенаправленно подводя человечество к осознанию неизбежности замены своих сердец. Некоторые физиологи пытались противостоять натиску этих заблуждений, предлагая вместо законов гидродинамики такие гипотезы, как 'периферическое артериальное сердце' [25], 'сосудистый тонус' [26], действие артериальных пульсовых колебаний на венозный возврат крови [27], центробежно-вихревого насоса [28], но ни одна из них так и не смогла объяснить парадоксы перечисленных явлений и предложить иные механизмы работы сердца. Собрать и систематизировать противоречия в физиологии кровообращения нас заставил случай в эксперименте по моделированию неврогенного инфаркта миокарда, поскольку в нем мы тоже натолкнулись на парадоксальный факт [29]. Непреднамеренная травма бедренной артерии у обезьяны вызвала инфаркт верхушки сердца. На ее вскрытии обнаружилось, что внутри полости левого желудочка над местом инфаркта образовался тромб, а в левой бедренной артерии перед местом травмы сидели друг за другом шесть таких же свертков крови. (Когда внутрисердечные тромбы попадают в сосуды, их принято называть эмболами.) Вытолкнутые сердцем в аорту, они почему-то все попали только в эту артерию. В других сосудах ничего похожего не было. Именно это и вызвало удивление. Каким образом эмболы, образующиеся в единственном участке желудочка сердца, отыскали место травмы среди всех сосудистых ответвлений аорты и попали точно в цель? При воспроизведении условий возникновения подобного инфаркта в повторных опытах на разных животных, а также с экспериментальными травмами других артерий обнаружена закономерность, состоящая в том, что травмированные сосуды любого органа или части тела обязательно вызывают патологические изменения только в определенных местах внутренней поверхности сердца, а образующиеся на них тромбы всегда попадают к месту травмы артерий. Проекции этих участков на сердце у всех животных оказались однотипны, но размеры их неодинаковы. Например, внутренняя поверхность верхушки левого желудочка сопряжена с сосудами левой задней конечности, площадь справа и сзади от верхушки с сосудами правой задней конечности. Среднюю часть желудочков, в том числе и перегородку сердца, занимают проекции, сопряженные с сосудами печени, почек, поверхность ее задней части соотносится с сосудами желудка, селезенки. Поверхность, расположенная выше средней наружной части полости левого желудочка, - проекция сосудов левой передней конечности; передняя часть с переходом на межжелудочковую перегородку - проекция легких, а на поверхности основания сердца находится проекция сосудов мозга и т.д. Таким образом, в организме было обнаружено явление, обладающее признаками сопряженных гемодинамических связей между сосудистыми областями органов или частей тела и конкретной проекцией их мест на внутреннюю поверхность сердца. Оно не зависит от действия нервной системы, поскольку проявляется и при инактивации нервных волокон. Дальнейшие исследования показали, что травмы различных ветвей коронарных артерий также вызывают ответные поражения в сопряженных с ними периферических органах и частях тела. Следовательно, между сосудами сердца и сосудами всех органов существует прямая и обратная связь. В случае прекращения кровотока в какой-то артерии одного органа обязательно появятся кровоизлияния и в определенных местах всех остальных органов [30]. Прежде всего, оно произойдет в локальном месте сердца, а спустя некоторый промежуток времени обязательно проявится в сопряженном с ним участке легких, надпочечников, щитовидной железы, мозга и т.д. Оказалось, что наше тело устроено из внедренных друг в друга клеток одних органов в интиму сосудов других. Это клетки-представительства, или диффероны, расположенные по сосудистым разветвлениям органов в таком порядке, что создают рисунок, который при достаточной фантазии можно принять за конфигурацию тела человека с сильно искаженными пропорциями. Подобные проекции в мозге называются гомункулюсами [31]. Чтобы не выдумывать для сердца, печени, почек, легких и остальных органов новую терминологию, и мы будем называть их так же. Исследования привели нас к выводам, что, помимо сердечно-сосудистой, лимфатической и нервной систем, в организме действует еще и система терминального отражения (СТО). Сравнение иммунофлуоресцентного свечения клеток-представительств одного органа с клетками миокарда в сопряженном с ним участке сердца показали их генетическую схожесть. Кроме того, и в порциях эмбол, связывающих их, кровь оказалась с идентичным свечением. Из чего можно было сделать вывод, что каждый орган имеет свой набор крови, с помощью которого он общается со своими генетическими представительствами в интиме сосудов других частей тела. Естественно возникает вопрос, что за механизм обеспечивает эту невероятно точную селекцию отдельных клеток крови и их адресное распределение по своим представительствам? Его поиски привели нас к неожиданному открытию: управление потоками крови, их селекцию и направление в определенные органы и части тела совершает само сердце. Для этого на внутренней поверхности желудочков оно имеет специальные устройства - трабекулярные углубления (синусы, ячейки), выстланные слоем блестящего эндокарда, под которым находится специфическая мускулатура; через нее, на их дно, выходят несколько устьев сосудов Тебезия, снабженных клапанами. По окружности ячейки располагаются круговые мышцы, способные менять конфигурацию входа в нее или полностью его перекрывать. Перечисленные анатомо-функциональные признаки позволяют уподобить работу трабекулярных ячеек 'мини-сердцам'. В наших экспериментах по выявлению проекций сопряженности именно в них и организовывались тромбы. Порции крови в мини-сердцах образуются подходящими к ним коронарными артериями, в которых потоки крови систолическими сокращениями в тысячные доли секунды, в момент перекрытия просвета этих артерий, скручиваются в вихри-солитонные упаковки, которые служат основой (зернами) для их дальнейшего роста. В диастолу эти солитонные зерна через устья сосудов Тебезия фонтанируют в полость трабекулярной ячейки, где наматывают вокруг себя струи крови из предсердий. Поскольку каждое из этих зерен имеет свою величину объемного электрического заряда и скорость вращения, то к ним устремляются эритроциты, совпадающие с ними по резонансу электромагнитных частот. В результате, образуются различные по количеству и качеству кроdви солитонные вихри. В фазу изометрического напряжения внутренний диаметр полости левого желудочка увеличивается на 1-1,5 см. Возникающее в этот миг отрицательное давление всасывает солитонные вихри из мини-сердец к центру полости желудочка, где каждый из них занимает конкретное место в выводных спиралевидных каналах. В момент систолического выталкивания крови в аорту миокард закручивает все находящиеся в его полости солитоны эритроцитов в единый винтообразный конгломерат. И поскольку каждый из солитонов занимает определенное место в выводных каналах левого желудочка, то получает свой силовой импульс и ту винтовую траекторию движения по аорте, которые наводят его на цель - сопряженный орган. Назовем 'гемоникой' способ управления мини-сердцами потоков крови. Ее можно уподобить вычислительной технике на основе струйной пневмогидроавтоматики, применявшейся в свое время в управлении полетом ракет [32]. Но гемоника более совершенна, так как одномоментно со струйным взаимодействием потоков производит селекцию эритроцитов по солитонам и каждому из них придает адресное направление. В одном куб. мм крови содержится 5 млн. эритроцитов, тогда в куб. см - 5 млрд. эритроцитов. Объем левого желудочка равен 80 куб. см, значит, его заполняют 400 млрд. эритроцитов. Кроме того, каждый эритроцит несет на себе минимум 5 тыс. единиц информации. Умножив это количество информации на количество эритроцитов в желудочке, получим, что сердце в одну секунду обрабатывает 2 х 1015 единиц информации. Но так как эритроциты, образующие солитоны, находятся друг от друга на расстоянии от миллиметра до нескольких сантиметров, то, поделив это расстояние на соответствующее время, получим величину скорости операций по формированию солитонов внутрисердечной гемоникой. Она превосходит скорость света! Поэтому процессы гемоники сердца до сих пор не зарегистрированы, их можно лишь рассчитать. Благодаря этим сверхскоростям, создается основа нашего выживания. Сердце узнает об ионизирующем, электромагнитном, гравитационном, температурных излучениях, перемене давлений и состава газовой среды задолго до восприятия их нашими ощущениями и сознанием и подготавливает гомеостаз к этому ожидаемому воздействию [33]. Так, случай в эксперименте помог раскрыть действие ранее неизвестной системы терминального отражения, которая клетками крови через мини-сердца связывает между собой все генетически родственные ткани организма и тем самым обеспечивает геном человека целевой и дозированной информацией. Поскольку с сердцем сопряжены все генетические структуры, то оно несет в себе отражение всего генома и держит его под постоянным информационным напряжением. И в этой сложнейшей системе нет места примитивным средневековым представлениям о сердце. Казалось бы, сделанные открытия дают право уподобить функции сердца суперкомпьютеру генома, но в жизни сердца происходят события, которые нельзя отнести ни к каким научно-техническим достижениям. Судмедэкспертам и патологоанатомам хорошо известны различия в человеческих сердцах после смерти. Одни из них умирают переполненные кровью, как раздутые мячи, а другие оказываются без крови. Гистологические исследования показывают, что когда в остановившемся сердце имеется избыток крови, то мозг и другие органы гибнут потому, что они обескровлены, а сердце удерживает кровь в себе, пытаясь сохранить только свою жизнь. В телах же людей, умерших с сухим сердцем, не только вся кровь отдана больным органам, но в них находят даже частицы мышц миокарда, которые сердце пожертвовало для их спасения, а это уже сфера нравственности и не предмет изучения физиологии. История познания сердца убеждает нас в странной закономерности. В нашей груди бьется такое сердце, каким мы его себе представляем: это и бездушный, и вихревой, и солитонный насос, и суперкомпьютер, и обитель души. Уровень духовности, интеллекта и знаний определяют то, какое сердце мы хотели бы иметь: механическое, пластмассовое, свиное или же свое - человеческое. Это - как выбор веры.
Литература 1. Рафф Г. Секреты физиологии. М., 2001. С. 66. 2. Фолков Б. Кровообращение. М.,1976. С.21. 3. Морман Д. Физиология сердечно-сосудистой системы. СПб., 2000. С. 16. 4. Дебейки М. Новая жизнь сердца. М, 1998. С.405. 5. Гарвей В. Анатомическое исследование о движении сердца и крови у животных. М., 1948. 6. Конради Г. В кн.: Вопросы регуляции регионарного кровообращения. Л., 1969. С13. 7. Акимов Ю. Терапевтический архив. В. 2. 1961. С.58. 8. Назалов И. Физиологический журнал СССР. Н> 11. 1966. C.1S22. 9. Маршалл Р. Функция сердца у здоровых и больных. М., 1972. 10. Gutstain W. Atherosclerosis. 1970. 11. Шершнев В. Клиническая реография. М., 1976. 12. Shoameker W. Surg. Clin. Amer. ? 42. 1962. I3. Генецинский А. Курс нормальной физиологии. М.. 1956. 14. Вальдман В. Венозное давление. Л.,1939. 15. Труды международного симпозиума по регуляции емѓ костных сосудов. М., 1977. 16. Иванов К. Основы энергетики организма. СПб., 2001. С.178; 17. Основы энергетики организма. Т. 3. СПб., 2001. С. 188. 18. Gunlhemth W. Amer. J. Physil ? 204. 1963. 19. Bernard С. Rech sur le grand sympathigue. 1854. 20. Маркина А. Казанский медицинский журнал. 1923. 1 См. о биосолитонах доклад С.В.Петухова в сборнике. - Прим. ред.
Автор: Гончаренко A. И.
Ссылки по теме
|