Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc21685/doc.pdf
Дата изменения: Thu Mar 20 15:10:14 2008
Дата индексирования: Mon Oct 1 21:38:12 2012
Кодировка:
MATHCAD « » . .

(, ) Mathcad - . , Mathcad , Mathcad- . Mathcad , .
. «- » - . , , . : Microsoft Excel; ( Pascal, C Basic); . (, ) Excel. -

136


. . -- -- 2007, . 1, . 136­141 Hotomtseva M. A. -- MCE -- 2007, v. 1, p. 136­141

. . , . Mathcad, , , , -- , .
.. Mathcad, : ; ; ; ; ; - . Mathcad . ( n = 2 ) ( m = 6 ) . .

. 1.

-

137


1. Part 1. Humanitarian and science education

Pi Pi (t ) Si t . j:=1..m Pj := 0 P0 :=1. := := P:=P. D0 P1 - m P0 for i 1..n - 1 if n > 1 Di (m - i+1) Pi-1 - (i+1) Pi D(P) := for j n..m - 1 D j ( m - j + 1) Pj-1 - n Pj D m Pm-1 - n Pm D
. 2.
+1 +1

- [(m - i) +i ] Pi

- [(m - j) + n ] Pi

(. 3).

P 5 - 2 P 6 . 3.

D (P)

P 1 - 6 P 0 6 P 0 + 2 P 2 - ( 5 + ) P 1 5 P 1 + 2 P 3 - ( 4 + 2 ) P 2 4 P 2 + 2 P 4 - ( 3 + 2 ) P 3 3 P 3 + 2 P 5 - ( 2 + 2 ) P 4 2 P 4 + 2 P 6 - ( + 2 ) P 5



(. 4).

138


. . -- -- 2007, . 1, . 136­141 Hotomtseva M. A. -- MCE -- 2007, v. 1, p. 136­141

Given

i= 0



m

Pi

1

D (P )

0

Pp := Find( P ) Pp = ( 0. 062 0. 187 0. 233 0. 233 0.175 0. 088 0.022 )
T

. 4.

: , , , . , - (. 5).
tn := 0 te := 2 N := 50

DR ( t , P ) := D ( P ) S := rkfixed( P , tn , te , N , DR) . 5.

, 0 t , i + 1 -- Pi ( t ) Si t . . 6.

139


1. Part 1. Humanitarian and science education
1.2 1.142 1 S S2 0.8 S3 4 S 5 S 0.6 1

S 6 0.4 7 S 0.2 0 0 tn 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 te 2

. 6.

m, n, , , . , , . . . , Mathcad , Mathcad- . 1. .., .. «- » -- : , 2006.-- 84 c.

140


. . -- -- 2007, . 1, . 136­141 Hotomtseva M. A. -- MCE -- 2007, v. 1, p. 136­141

APPLICATION OF MATHCAD IN TEACHING "ECONOMICAL-MATHEMATICAL MODELS AND METHODS" DISCIPLINE Hotomtseva M. A.

(Belarus, Minsk) It is considering the possibility of using Mathcad in conducting laboratorial practice in economical-mathematical modeling. It is showed that modeling in Mathcad environment allows to assimilate practical skills in algorithmization and programming, mathematical model of the problem essentially consist of the realization of algorithm like a Mathcad document. The using of such advantages of Mathcad like symbolic evaluations and programming allows to unify the algorithm of construction, researching and optimizing different models.

141