Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc15813/doc.pdf
Дата изменения: Tue Oct 30 16:09:32 2007
Дата индексирования: Mon Oct 1 21:05:16 2012
Кодировка:
.. (. .) . , . . ­ , ­ . . . THE ETHNOGENY SIMULATION MODEL WITH INTERACTIONS BASED ON THE MUTUAL ADAPTATION FACTOR Surgutanov V.V. (Kamyshin, Volgograd region) The issue deals with mathematical model of global ethnogeny. The external, internal and interethnic factors are taken into account. The two multi-agent systems interaction is considered. The first is the populations system, and the second is the landscape cells system. The structure and behavior of agents are regulated by the mechanisms of genetic algorithm using the principle of agent maximum adaptation both to populations and landscape system. . . ­ , . , . , , ,
126


.. -- -10, 2002, .126-127

. , , . , , . , , . ­ , , . , . , , -. , . , , , . , , , . . . .. [1], () . . , 127


1.

.. , , [2]. .. , , , . . , , (). , , . [3] , .. . , , , . . .. , . , . , , r . , P(x, y) ­ x,y. . . , r L(x, y) , ,
128


.. -- -10, 2002, .126-129

x,y. : r ( P(x, y) ) , r ­ ( L(x, y) ), (.1.).

­

. 1. .

, . (-""), , , (.2.). r P(x, y) .

P(x,y)

L(x,y)
. 2. .

, , ­ r P(x, y) ( ) x,y. . . -"", , .
129


1.

. 1. («») n. ; rr r {p1 , p2 ,.. pn} . r s- ( s) P s r . P s k- s- k- (k1..n), r | P s | s. 2. ( x 0 , y 0 , x max , y max ) XOY. OX Y x y . c xi = x 0 + i x y j = y 0 + j y , i 0 .. i max , j 0 .. jmax , x - x0 y - y0 , jmax = max . i max = max
x y

3. ( xi , y j ) smax . (), r ­ Pi,sj = P ( xi ,y j ) s , s1..smax ­ , i,j ­ . 4. ( xi , y j ) , , . , . , ( xi , y j ) r "" Li, j = L( xi ,y j ) . , :
130


.. -- -10, 2002, .126-131

· ·



r Li, j = L( xi ,y j ) ,









r Pi,sj = P ( xi ,y j ) s .



L P , , . : 1. i0..imax , j0.. jmax : 1.1. Q
r
i, j

( -""

i,j). : 1.1.1. s1 , s2 1..s max ( -"" ). 1.1.2. I:{1,2,...n} ( ) I1 I 2 = I - I1 . 1.1.3. r Qi, j : kI1 (Qi , j ) k = ( Pi ,s1j ) k , kI 2
(Qi , j ) k = ( Pi ,s2 ) k . j

1.1.4.

k m 1..n , d N mut 1..M (M ­ ). mut/M>Pmut, (Qi , j ) k m = d ( P
mut).

r 1.2. - Pi, j =

1 s
max

s





max

rs Pi, j (-

s =1

2.

i1.. r r r 1r Hi, j = ((Pi, j + Li, j ) + (Pi 4

i,j). i max , j0.. jmax
-1, j

r + Li

-1, j

)

)

( -

(i,j) (i-1,j)).
131


1.

3.



i0..i

max

, j1.. jmax

r r r r r Vi, j = 1 ((Pi, j + Li, j ) + (Pi, j -1 + Li, j -1 )) 4

( (i,j) (i,j-1)). 4. i1..i max , j0.. jmax (i-1,j) : 4.1. Pi,j( (i-1,j)): r r 4.1.1. E s = Pis1, j - H i, j ( i,j s (i-1,j) (i,j) (i-1,j)). s 4.1.2. s del s E i,j E sdel ( i,j s del ). 1 4.1.3. Pi,j( (i-1,j)) = . r r Oi, j - H i, j 1+ E sdel i,j 4.2. q1..M ( q ), , Pi,j( (i-1,j))> , M r r Pisdelj =O i, j ( -"" -1, (i,j) (i-1,j)). 5. (i+1,j), (i,j-1) (i,j+1)). 6. i0..i max , j0.. jmax r r Pi, j Li, j : r rs rs rs 1 r s1..s max Pi, j = Pi, j + ( Pi, j + Li, j ) - Pi, j , 2 r r r r r 1 Li, j = Li, j + ( Pi, j + Li, j ) - Li, j , , (0..1) 2
132


.. -- -10, 2002, .126-133

. . , . : - n ­ , - imax, jmax ­ , - smax ­ , - P, L ­ , - Pmut ­ "" "", - ­ , - ­ . . .

. 3. .

, . , . . 1. ( Pmut, ) 133


1.

. . . , , . 2. , , , . . 3. : a) , ( s Pi, j = Li, j ) , ( P, L ); b) ( ) ( ); c) , r r rs ( (i , j )U Pi, j = Li, j = l 1 , r r r r rs (i , j )U Pi, j = Li, j = l 2 , l 1 l 2 ). (Pmut=0), . , . d) , . 4) . ,
134

r

s

r


.. -- -10, 2002, .126-135

, r r ( E s = Pis1, j - H i, j ). i,j . 5) , -"". , . , ( ), . . . "" . , ( ), . (), , , . . , [4], [5] . , , . , , . , . , ( , ), (
135


1.

, ). . . 1. .. « » -. , 1994. ­ 541. 2. .. « » «». , 1973. ­ 280. 3. G. Winter «Genetic algorithms in engineering and computer sciences» . . -. , 1999. ­ 464. 4. .. « » . , 2000. . 5. .44-53. 5. .., .. « » , , . " " -, 2002. . 9. . 308-317.

136