Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc15795/doc.pdf
Дата изменения: Tue Oct 30 15:29:32 2007
Дата индексирования: Mon Oct 1 20:44:38 2012
Кодировка:
.., .., .. () - . . . MAGNETOHYDRODYNAMICAL ANALOGY AND SEISMOELECTRICAL EFFECT Natyaganov V.L., Chaika A.A., Chistyakova A.A. (Moscow) The work is offered with the physics and mathematics model of seismoelectrical effect on basis of magnetohydrodynamical analogy of the theory of airplane wing motion. Hydrodynamic analogue of this effect goes back to the Zhukovski idea about the attached vortex of the wing which flows around with the potential stream of an ideal liquid. The established analogy discovers a fundamental opportunity for an uniform explanation of all basic kinds of display of seismoelectrical effect with the help of registered changes of an atmospheric electric field before strong earthquakes.

355


3. (II)

. . , , , ­ . , ­ , , . (), ; () , . . , - , - . , , . , ( ­ ) .. , ( ­ ) , , ( ­ ) , , . ( , .. ), . : , 356


.. -- -10, 2002, .355-357

, , . , .. : « , . , ... » [1], XX . : 1) 1966 . 2) () 120 1924 ., (1946 .) (1949 .) [2]. 5 (1966 .) , . ­ (), - . 70- .. [2 ­ 5]. , , . , (), .
357


3. (II)

, . [3] : , « » . , .. « » . , , [3] . 1. , , . 2. « » , . 3. . 4. , . . . «» r () v r , r , H r j . ( ) . 358


.. -- -10, 2002, .355-359

, ( ­ ­ ­ ) [6 ­ 8] . : : r div v = 0 r rot v = 0 C (1) rr rot v = C r r r : v v 0 : {v n } C = 0 : r div H = 0 r rot H = 0 C r rot H = r C j r r r : H H 0 ; {H n } C = 0

(2)

, n ­ C «» . , , 1858 . , , . (2) -. [9] , . , [6 ­ 8], .
359


3. (II)

1. , , , [6 ­ 9]. 2. v n = 0 {v n } = 0 - , ( r ). r H [10] . 3. , ; [2, 5]. 4. C (1) , , , . ( ) . , [11]. , ( ), ! 5. , (1) (2) x' = x - v t . , ,
360


.. -- -10, 2002, .355-361

. , . C ( C xOy: 0 x b , y = 0 )
vy = 1 ( s )ds , x [0, b]. 2 x - s 0
b

(3)

, v y = f(x) x, (3) [12]: 0 x b

1( x) =

2



b- x x


0

b

s f (s) ds, b-s s- x

2 b f(s) 1 2 (x) = s x(b - x) 0


s(b - s) ds + Const, -x

3 (x) =

2 x(b - x)


0

b

f(s) ds s(b - s) (s - x)


0

b

f(s) ds = 0. s(b - s)

1 (x) , 2 (x) 3 (x) , b b s = (1 + cos), x = (1 + cos ), , [0, ]. 2 2 f(x) cos(n ) , [8]
361


3. (II)

Jn =


0



sin(n ) cos(n )d = . sin cos - cos

, f(x)=1 1 (x) 2 (x) :
1b ( x ) = 2
b- x x 2( 2 x - b ) , 10 ( x ) = 2 , 2 ( x) = . x b- x x(b - x )

1b (x) x b , 10 (x) x 0 - , 2 (x) . 10 (x) « », x b , - , [3] «» 10 (x) , . , . - ( .. « »), 1 (x) , 2 (x) 3 (x) (3), .. « ». , , , [2 ­ 4] . , (3) [8] , C . , 362


.. -- -10, 2002, .355-363

. , , [5]. .
.. .. , .

. 1. .. . . .1. . ­ .: , 1986, . 361 ­ 434. 2. . . .. ­ : , 1983. 3. .. . . ­ : - , 1991. 4. .., .., .. . ­ .: , 1988. 5. .. . ­ , 1980. 6. .. . ­ .-.: , 1949. 7. .. . ­ .-.:, 1950. 8. .. . ­ ..: - , 1947. 9. .. . .2. ­ .: , 1973. 10. Moffat H.K, Magnetic field generation in electrically conducting fluids. ­ London ­ New York ­ Melbourne: Cambridge V.P., 1978. 11. .., .. . ­ .: , 1973. 12. .. . ­ .-.: , 1946.

363