Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc15599/doc.pdf
Дата изменения: Wed Oct 24 19:28:08 2007
Дата индексирования: Mon Oct 1 20:25:34 2012
Кодировка:
. ., . .

(, ) . , . in vitro , , , . , - . - . , , , () . . , , . , [1], [2] , , . , ,


8. , Part 8. Mathematical methods in biology, ecology and chemistry

, -- . , , . (), . , , , , [3]. , , , 1953 [4], 1970 [5]. . , / [6,7]. - - . , in vitro . (). . , , .
980


. ., . . -- -- 2005, . 3, . 979 ­ 981 Kolobov A.V., Polezhaev A. A. -- MCE -- 2005, vol. 3, p. 979 ­ 981

: / ? , , , , . , . . , in vitro. , , , , , . . , . , . , . , , , , . , , , , . 981


8. , Part 8. Mathematical methods in biology, ecology and chemistry

, . , :
n t m t h t S t r = Bn - P( S )n - .(nV - Dnn), r = P( S )n - .(nV ), r =-.(hV ), =- kS S + S* n + DS S .

n m , h -- . , (), (). Dn -- , V(x,y) -- . , , . , : n + m + h = 1. , [8], , :
r V = + Dnn.

982


. ., . . -- -- 2005, . 3, . 979 ­ 983 Kolobov A.V., Polezhaev A. A. -- MCE -- 2005, vol. 3, p. 979 ­ 983

, (1) :
n = Bn(1 - n) - P( S )n + .( Dn (1 - n)n) - (n, ), t m = P( S )n - mBn - .( Dn mn) - (m, ), t S kS =- n + DS S , t S + S*

= Bn.

[9]. (2) 400x400, :
n E = m E = 0, S = = 0, n I = m I = S I = I = 0,

I -- x = 0 y = 0, E -- . , , . (150;400) (400;150), S = 1. , , . (0;0) -- n, -- h. . . 983


8. , Part 8. Mathematical methods in biology, ecology and chemistry

. . (Dn = 2), , :
V
front

= 2 Dn в B

(Dn = 0,05), , (3), . 1 2 . , , , . , , , , . , , . , 3 4, , . , .

984


. ., . . -- -- 2005, . 3, . 979 ­ 985 Kolobov A.V., Polezhaev A. A. -- MCE -- 2005, vol. 3, p. 979 ­ 985
7-

10-

13-

. 1. Dn = 2

985


8. , Part 8. Mathematical methods in biology, ecology and chemistry
10-

18-

26-

. 2. Dn = 0,05

986


. ., . . -- -- 2005, . 3, . 979 ­ 987 Kolobov A.V., Polezhaev A. A. -- MCE -- 2005, vol. 3, p. 979 ­ 987
400

300

0.90 0.75 0.40 0.20

200

. 3. (n + m) Dn = 2, 15 .

100

0 400

100

200

300

400

300

0.90 0.75 0.40 0.20

. 4. (n + m) Dn = 0,05, 32

200

100

0

100

200

300

400

. , , (). , . , . , , . , , 987


8. , Part 8. Mathematical methods in biology, ecology and chemistry

, . , : . , , , . , x = 0 y = 0, , , . , , , . , .
.

: 1. Brockmann M.A., Ulbricht U., Gruner K., Fillbrandt R., Westphal M., Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors // Neurosurgery. 2003. V.52. 6. Jun. P.1391­1399. 2. Truman L.A., Ogden C.A., Howie S.E., Gregory C.D. Macrophage chemotaxis to apoptotic Burkitt's lymphoma cells in vitro: role of CD14 and CD36 // Immunobiology. 2004. V.209. 1­2. P.21­30. 3. Quinones L.G. and Garcia-Castro I. Characterization of human melanoma cell lines according to their migratory properties in vitro // In Vitro Cell Dev Biol Anim. 2004. V.40. 1­2. Jan-Feb. P.35­42. 4. Patlak C.S. Random walk with persistence and external bias // Bull. of Math. Biophys. 1953. V.15. P.311­338. 5. Keller E. F. and Segel L. A. Initiation of slide mold aggregation viewed as an instability // J. Theor. Biol. 1970. V.26. P.399­415.
988


. ., . . -- -- 2005, . 3, . 979 ­ 989 Kolobov A.V., Polezhaev A. A. -- MCE -- 2005, vol. 3, p. 979 ­ 989

6. Dormann S. and Deutsch A. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton // In Silico Biol. 2002. V.2. 3. P.393­406. 7. Stewart J. M., Broadbridge P. and Goard J. M. Symmetry Analysis and Numerical Modelling of Invasion by Malignant Tumour Tissue // Nonlinear Dynamics. 2002. V.28. P.175­193. 8. Gusev, A. and Polezhaev A. Modelling of a cell population evolution for the case existence of maximal possible total cell density // Kratkie soobscheniya po fizike FIAN. 1997. 11­12. P.85­90. 9. Kolobov A.V., Polezhaev A.A., Solyanik G.I. Stability of tumour shape in pre-angiogenic stage of growth depends on the migration capacity of cancer cells / In: Mathematical Modelling & Computing in Biology and Medicine (Ed.: V.Capasso). -- Bologna: Progetto Leonardo, 2003. P.603­609.
DIRECTED TUMOUR GROWTH AND INVASION IN ABSENCE OF CHEMOTACTIC CELL MOTILITY Kolobov A.V., Polezhaev A. A.

(Russia, Moscow) Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

989