Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.mce.biophys.msu.ru/archive/doc57523/doc.pdf
Äàòà èçìåíåíèÿ: Tue Mar 9 12:29:20 2010
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 22:46:41 2012
Êîäèðîâêà:
-

. .,

. ., . .

. .,

. .,

, -- , . , .

-

, .

. , CO2 , .

, ,

-

, . , , I . . 198

. -

-- II,

,

(Minkevich,


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

1982; 1983; Minkevich, Eroshin, 1973; , 2005; , , 1976). .. . (Lee, Erickson, 1987). (Kroon, Thoms, 2006). (Minkevich et al., 2004). , . . -- (RO) (Minkevich, 1982; 2005). : , ).
- + - HCO3 + H 2O + NH 4 + H 2 PO4 + H + + ... + - (1 4 ) O2

-

,

,

, H+

. .(

(1) , (1), ,

(1) -- . . (Minkevich, 1982).

.

H0,

. . -

G

0

..

G0 , H 0 ,

. .

- (1 4 ) O ,

2

199


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

, « » - (1 4 ) O
2

(1) (

).
--

(Minkevich, 1982). (1): (1 2 ) H 2O - H + + - (1 4 ) O ( . « » , , ), . ., RO O2
N
RO

2

=e

-

RO. ) -4 RO. . ( « » , RO, . CHpOnNq
m

-

N

RO

,

m
=

ox

N
m

ox RO

.
-N
ox RO

:
=N
ox RO


12

=


12

m

ox

(2) ( CHpOnNq, -

-- = 4 + p - 2n - 3q --
RO 1 C).

(

RO -- RO. , , e-, = ( ,

RO

). , , 1 »

-- . RO (1

RO

, )
-1

,

-1

« . .). ,

. ( )
200

-

.


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

, ; RO. G ,H
RO RO

,H

RO

- U

1
RO

, .

. , (

G

RO

U

RO

, , 2005). = 115.6

)( G / .RO ± 2%. ,
RO

/

.RO ± 4%,

H

RO

= 111.8 .RO ± . . , -

(1) H 4.6% ( G
RO RO

. = 114 /

,H

RO

, 2005). U RO , , , . « G
RO

RO »

G

RO

.

ATP ( ) G
RO

. , ,

-

ATP. , , , , (Fe, Cu), , , , -

G

RO

.

201


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

,

, , , ATP. , , , , , , , , , . RO e-, . , , ) (ATP, GTP
.

( , RO , , -

). ,

RO

(

. .). (RO), ( ) : RO rE , -- rM , -- rP
h1

(

)

. 1.

-- rH ; . rPh2 . , « ( -- µ. , »( , . -- . RO, ) : , , ) « » . ,
-1

1 .

. RO



202


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

. 1. -- ; --

. . . ; . I II -- ; H+in I H+out -- II; , -

.1 . , RO, O2, -- , , . ,
203

Z-

-2

+2 RO, ( RO). -- H+in --

,

, II,

-


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

rE2 . ; . , , . I, , , RO , NADP. H . I, , , , . NADP , . NADPH CH2O , , NADPH -- , , , . ATP, GTP -- pH . , , , CH2O. CO2, , . , , « », ,
+ out

, -

,

,

, .

,

H

+ in

I.

-

-

ATP. CH2O

-

204


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

( . .), . ( ), , ATP. H+i «
n

~30

/

. ,

-

-

ATP ATP--

GTP). ( -

: + ADP + H3PO4 H+out + ATP », . . ,

,

(3) -

( . .,

, 1978). ,

-- , ..

-

. --

, , ,
.

«

» , . ,

. . , : , .

(4) (5) (6) (7)

E2 - rE2 - rO = 0 , rE2 - E2 - rE21 = 0 ,
rE21 + rEc - rE22 = 0 , rE22 + E1 - rE1 = 0 ,

205


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

rE1 - rEc - µ - E1 = 0 . RO rO = - rO < 0 . rH1 + rH2 - rHM - H = 0 . : rM - rMB0 - rMB1 - M = 0 . RO, , . II I: Ph2 = rPh2 rE2 = 1 , Ph1 = rPh1 rE1 = 1 :1

HE2

(8) , (4)-(8) -- : (9) (10) . (11) ). : = rH1 rE22 = 2 .
-

.

(

= rH2 rO = rH2 ( - rO ) = 1 ,



HE 1

(12) II, . (13)

:2e , 1 , III QATP M = rHM rM = 4 --4 1 , , , -2RO.



B1

= rM

B1

ATP (Elston et al., 1998). 18ATP NADPH CH2O , , 24RO (Lehninger et al., 1993), µ rMB1 µ = 18 24 = 0, 75 . (14) . RO (15)
.

B0 = rMB0 µ = 0.67 Â 1 . (Minkevich, 1985, , 2005). (4)-(15) 19 . 14 , . 5 ,

-

206


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

, , . , : , -

E1 , E2 , H , M .
(

E2 ,
. .

)

.

, (

, , 1978)),

µ

( , ,

,

,

,
o rPtht ,

. : (16)

rPh1 + rPh2 = r .
, , 4 -- 15, ( E1 , E2 , H , M ) rPh1 rPh2 , , -- I, . 1. (4)-(8), , , . -- , . (2). 2. (9) (10) (17) , (12)-(15) (7), , (17) , , : 19-4=15,

tot Ph

. ,

µ = - rO = rO
-- , -- --

(17) -

-

rE

1

µ

207


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

. (5)-(8),

,

rE

1

Ph1 , I ( .(11)).
II.
Ph2

rP

h1

-- rE2

,

,

rPh2 ,
:

rPh2 -- rPh1 (18)

rPh1 + rPh2 =

µ
m X/Ph

+ m Ph ,
HE1 h1 + (



m X/Ph

=



M

(



B0

+

B1

)


M

P

HE1



Ph2

-

HE2



Ph1

)

(19)

mPh =

1 HE

(
1

H

+ M

)



Ph1

+ (

Ph1

E1 + Ph2

E2

)



HE1

(20)

(18)
1 = = 1 + mP
h

µ,
:
, (21) (22) , 1 ( , 1978)), . . , , , .( ) . , . m
Ph


--

X/Ph



m X/Ph

µ

µ
rPh1 + rPh2

X/Ph

, --

. RO

( ,


X/Ph

m X/Ph

--

,

µ,
.

-

208


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

(18)

(21) , , -

, 1979; Minkevich et al., 2004; Pirt, 1965; , 1976). , , , . , . , . , 3. rEc = rE1 , ,
m X/Ph

, (Erickson et al., , 2005; , , RO, -

mPh , . , 1 . HE1 (18). (8), (23) : 1 µ + [H + M HE1



m X/Ph

M

(



B0

+

B1

)-(



HE1

+

HE2

)

M

]

. « , , , CO2 ATP. ATP, , I , , , »

(ATP

.),

, ATP. RO

.

. II.

-

209


6. . Part 6. Analysis of Complex Biological Systems. Models and Experiment

, , , . , .

, , -

. .. )
04-00375; -853.2008.4

( .
-0804-90-205_ , 07-

02.512.11.2213.

Elston T., Wang H. Oster G. Energy transduction in ATP synthase // Nature. -- 1998. -- Vol. 391. -- P. 510­513. Erickson L.E., Minkevich I.G. Eroshin V.K. Utilization of Mass-Energy Balance Regularities in the Analysis of Continuous Culture Data // Biotechnology and Bioengineering. -- 1979. -- Vol. 21. -- P. 575­591. Kroon B.M.A. Thoms S. From Electron to Biomass: a Mechanistic Model to Describe Phytoplankton Photosynthesis and Steady-State Growth Rates // Journal of Physiology. -- 2006. -- Vol. 42. -- P. 593­609. Lee H.Y. Erickson L.E. Theoretical and Experimental Yields for Photoautotrophic, Mixotrophic, and Photoheterotrophic bacteria. // Biotechnology and Bioengineering. -- 1987. -- Vol. 29. -- P. 476­481. Lehninger A.L., Nelson D.L. Cox M.M. Principles of Biochemistry. -- New York: Worth Publishers, 1993. Minkevich I.G. Eroshin V.K. Productivity and Heat Generation of Fermentation under Oxygen Limitation // Folia Microbiologica. -- 1973. -- Vol. 18. -- P. 376­385. Minkevich I.G. Physico-Chemical Properties of Organic Compounds and the Energetics of Metabolism // Journal of Theoretical Biology. -- 1982. -- Vol. 95. -- P. 569­590. Minkevich I.G. Mass-Energy Balance for Microbial Product Synthesis - Biochemical and Cultural Aspects // Biotechnology and Bioengineering. -- 1983. -- Vol. 25. -- P. 1267­1293.
210


. ., . ., . ., ... -- ­ 2009, . 2, . 198­211 Minkevich I. G., Fursova P. V., Tjorlova L. D., ... -- MCE ­ 2009, v. 2, pp. 198­211

Minkevich I.G. Estimation of Available Efficiency of Microbial Growth on Methanol and Ethanol // Biotechnology and Bioengineering. -- 1985. -- Vol. 27. -- P. 792­799. Minkevich I.G., Laurinavichene T.V. Tsygankov A.A. Theoretical and Experimental Quantum Efficiencies of the Growth of Anoxigenic Phototrophic Bacteria // Process Biochemistry. -- 2004. -- Vol. 39. -- P. 939­949. Pirt S.J. The Maintenance Energy of Bacteria in Growing Cultures. // Proceedings of the Royal Society. Series B. Biological Sciences. -- 1965. -- Vol. 163. -- P. 224­231. .. .. // . -- 1976. -- Vol. 82. -- P. 103­116. .. . -- .: « », 2005. .. . -- .: , 1978.

MASS-ENERGY BALANCE OF THE GROWTH OF PHOTOSYNTHETIC ORGANISM CELLS WITH TWO PHOTOSYSTEMS

Minkevich I. G., Fursova P. V., Tjorlova L. D., Tsygankov A. A., Riznichenko G. Yu.

A brief account of the principles of cell metabolism mass-energy balance including definition of the general unit of chemical compound reductivity, redoxon, is given. A scheme of redoxon, high-energy proton and high-energy bond balances in the metabolism of photosynthetic cells with two photosystems is proposed. Balance equations are developed from which the stoichiometric interrelations between main metabolic flows as well as the quantum biomass yield are expressed in terms of bioenergetic parameters of cells.

211