Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.mce.biophys.msu.ru/archive/doc57284/doc.pdf
Äàòà èçìåíåíèÿ: Tue Mar 9 12:23:34 2010
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 22:44:16 2012
Êîäèðîâêà:
-

. .,

. .,

.

.

, . , . , . . , , -

. ( ) : (Albert and BarabÀsi, 2002). ,

p(k) ~ k­ ,

= 3. , 1 3 (Albert and BarabÀsi, 2002; Dorogovtsev and Mendes, 2002; Boccaletti et al., 2006). , , (, , . .), ( , . .) (Albert and BarabÀsi, 2002; Dorogovtsev and Mendes, 2002; Boccaletti et al., 2006). , , .. , , . (Li and Chen, 2003). -

85


5. Part 5. Mathematical Theories and Calculation Methods

, . , , (Bianconi and BarabÀsi, 2001) . : , , , (Dorogovtsev and Mendes, 2000),

-

. . . (Li and Chen, (Albert and BarabÀsi, 2002). . , , , -

. 2003)

-

(

) ­

,

-- .

~t , « , , .. (Bianconi and BarabÀsi, 2001) . , , ( ).

1/ 2

.

, « , « , ,

» »

.

-

» -

, ,

86


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98

i

ki ,
i

k
ii

:

/

j

k

j

j

, . (Dorogovtsev and t=0 t = 1,2,... , ­ . , i k i,

Mendes, 2000). : , .
t s,

s--

.

iP ( ki )
t

:
ki (t i ) k j (t
j0

j)

: 1. . t . 2. . . , M . : , m i « ». t, , m
0

m0 , m (m = m0) ,

, -

()

87


5. Part 5. Mathematical Theories and Calculation Methods

local

(i )

M m0 t ,

k

i

i

j local

(t i ) k j j (t
M

j)
m

.

, .
.

«

», .

M

M, . . , ). , ( ). k, , -

K nn (k ) .

(Caldarelli G., 2007), K nn (k ) . , , ( k
K
nn

K nn (k )

k

. .,

(k )

, ..

K
. .1
T 0, 10000 ,

nn

)M

­ .

: m m0 3 , 3 ; b) M 50 ; ) M ( ) 1, -

500 .

88


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98
1 1 0,1 0,01 Pk 0,001 0,0001 k a 10 100

1 1 0,1 0,01 0,001 0,0001 k Pk b 10 100 1000

1 1 0,1 0,01 0,001 0,0001 k Pk c 10 100 1000

. 1. b) M = 50; ) M = 500.

: m = m0 = 3, T = 10000, ) M = 3;

.2 , , .
20 20

K

nn

(k )

,

M
20

-

10 knn

a

10 knn

b

10 knn

c

0 0 10 20

k

0 30 40 0 50 k 100 150

0 0 50 k 100 150

. 2. K nn (k ) b) M = 50; ) M = 500.
1 1 0,1 0,01 Pk 0,001 0,0001 k a 10 100
0,1 0,01 Pk 0,001 0,0001 k 1 1 10

: m = m0 = 3, T = 10000, ) M = 3;
1
100 1000

1 0,1

10

100

1000

b

0,01 0,001 0,0001 k Pk

c

. 3. M = 500. : m = m0 = 3, T = 10000, ) M = 3; b) M = 50; )

89


5. Part 5. Mathematical Theories and Calculation Methods
18
20
60

kn n

knn

12 a

40 knn

b

c

6

10

20

0 0 10 k 20 30

0 0 50 100 k 150 200 250

0 0 100 200 k 300 400 500

. 4. M = 500.

K nn (k ) : m = m0 = 3, T = 10000, ) M = 3; b) M = 50; )

. 3­4 ­ ( )

, : m = m0 = 3, T = 10000, ) M = 3;

K nn (k )

b) M = 50; ) M = 500.

M
, . , , . ,
1 1 0,1 10 100

M
,

,

-

M
, .
1 1 0,1 10 100 1000

1 1 0,1 10 100 1000 10000

a
0,01 Pk 0,001 0,0001 k

b
0,01 Pk 0,001 0,0001 k

c
0,01 0,001 0,0001 k Pk

. 5. () C

c : m = m0 = 3, T = 10000, ) M = 3; b) M = 50; ) M = 500;

2.

.
() C

,

-

90


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98

=2

3. ,

. 5­6 . 7­8 --
1
1

K nn (k ) .
100 1000
1 0,1 0,01 0,001 Pk 10 100 1000 10000

1 1 0,1 0,01 Pk 0,001 0,0001 k 10 100

1 0,1 0,01 0,001 0,0001 Pk

10

a

b

c

k

0,0001

k

. 6. () C
18

c : m = m0 = 3, T = 10000, ) M = 3; b) M = 50; ) M = 500;
a
50 kn n

3.
c

b

600

12 kn n

400 kn n 200 0

25

6

0 0 10 k 20 30

0 0 100 k 200 300

0

500

k 1000

1500

2000

. 7.

K nn (k )

c

() C

: m = m0 = 3, T = 10000, ) M = 3; b) M = 50; ) M = 500;

2.

,

M
, , . . . -

M
.

-

91


5. Part 5. Mathematical Theories and Calculation Methods
18
30 450

12 kn n

20 kn n

300 kn n

6

a

10

b

150

c

0 0 10 k 20 30 40

0 0 50 k 100 150 200

0 0 500 k 1000 1500 2000

. 8.
()
1 P(k ) 0,1 0,01 0,001 0,0001 0,00001 1 10 k 100

K nn (k )
C
1 P(k )

c

: m = m0 = 3, T = 10000, ) M = 3; b) M = 50; ) M = 500;
1

3.
c

a

b

P(k )

0,1 0,01

0,1 0,01

0,001 0,0001 0,00001

0,001 0,0001 0,00001
1 10 k 100 1000

1000

1

10 k

100

1000

. 9.
()
40 35 30 25 20 15 10 5 0 0 100 k 200 300

c
C

:
0,2 ; b)
b
10 8
nn

,

2, m
a

m

0
35 30 25 20 15 10 5 0

1, M

50 , a)

1; )

2.
c

nn

K

K

nn

6 4 2 0

400

0

100

k

K

200

300

0

50

k

100

150

. 10.

K nn (k )

c

:
0,2 ; b)

() C

,

2, m
. 9­10 -

m

0

1, M

50 , a)

1; )

2.

K nn (k )

. : m m0 1 , T 10000 , M = 50; a)
1; ) 2.

0,2 ; b)

, . .
92

,


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98

.
.

M

m

.
-

--

.

p
k k
cutoff

.

.

, , ,

, , ). , ,
1

( , « », . . , .
1 0,9

p

k

cutoff

,

0,8 a b c

0,8 0,7 a b c

0,6

0,6 0,5 0,4 0,3 ,

0,4

,

0,2

0,2 0,1

0 0 0,2 0,4 0,6 0,8

0 0 0,2 0,4 0,6 0,8 1

. 11. m = m0 = 3, T = 10000, b) M = 50; ) M = 500. M.

)

. 12. : M = 3; m = m0 = 3, T = 10000, b) M = 50; ) M = 500.

)

: M = 3;

. 11 -

12 . , .

M

M.
, 93

,

-


5. Part 5. Mathematical Theories and Calculation Methods

M
­
( );

.

. 13

14 -

­ .

.

,

M M,
, .
1

1 0,9

-

0,8 a b

0,8 0,7 a b c

0,6

0,6 0,5

0,4

0,4 0,3

,

0,2

,

0,2 0,1

0 0 0,2 0,4 0,6 0,8 1

0 0 0,2 0,4 0,6 0,8 1

. 13.

. 14.

-

­ T = 10000, M = 500.

)

: M = 3;

m = m0 = 3, ­ ) b) M = 50; ) m = m0 = 3, T = 10000, b) M = 50; ) M = 500.

: M = 3;

. 15­16 ,
M,

. . .

M,

94


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98
1

1

0, 8

0,8

0, 6

a b c ,

0,6

a b c

0, 4 ,

0,4

0, 2

0,2

0 0 0 ,2 0 ,4 0 ,6 0 ,8 1

0 0 0 ,2 0 ,4 0 ,6 0 ,8 1

. 15.

. 16.

c

c

M

() C : m m0 50 ; ) M 500 ;

3, ) M 2.

3 ; b)

M

() C : m m0 3 , ) M 3. 50 ; ) M 500 ;

3 ; b)

. 17 .

-

M,
,

M,
.
.

, . -

, . , , . , .

,

95


5. Part 5. Mathematical Theories and Calculation Methods

1 0,9 0,8 0,7 0,6 0,5 0,4 , 0,3 0,2 0,1 0 0 0,2 0,4 0,6 0,8 1 b c

. 17.

m
M

m0

3, M

50

; ) a 0,2 ; b) a 1 ; ) a

() C
2.

,

2;

, . , , . M.

M
. -

­ , ­

M. M (
k).
, , ,
M

,
m
0

M

,

,

-

96


. ., . ., . . -- ­ 2009, . 2, . 85­98 Gadjiev B. R., Progulova T.B., Shchetinina D. P. -- MCE ­ 2009, v. 2, pp. 85­98

. . , . , , , . , . , . , , -

Albert R., BarabÀsi A.-L. Statistical Mechanics of Complex Networks // Rev. Mod. Phys. -- 2002. -- Vol. 74. -- P. 43­97. Bianconi G., BarabÀsi A.-L. Competition and multiscaling in evolving networks // Europhys. Lett. -- 2001. -- Vol. 54. -- P. 436­442. Boccaletti S., Latora V. et al. Complex networks: Structure and dynamics // Physics Repor. -- 2006. -- Vol. 424. -- P. 175­308. Caldarelli G. Scale-Free Networks: Complex Webs in Nature and Technology -- Oxford: Oxford University Press, 2007. -- P. 272. Dorogovtsev S.N., Mendes J.F.F. Evolution of networks // Adv. Phys. -- 2002. -- Vol. 51. -- P. 1079­1187. Dorogovtsev S.N., Mendes J.F.F. Evolution of networks with aging of sites // Phys. Rev. E. -- 2000. -- Vol. 62. -- P. 1842­1845. Li X., Chen G. A local-world evolving network model // Physica A. -- 2003. -- Vol. 328. -- P. 274­286.

97


5. Part 5. Mathematical Theories and Calculation Methods

EFFECT OF AGING ON A LOCAL-WORLD NETWORK WITH COMPETITION Gadjiev B. R., Progulova T. B., Shchetinina D. P.

We present an algorithm for generation of local-world networks with nodes' competition that is a generalization of the local-world evolving network model. We generated such networks for different distributions of fitness parameters and showed that changing distribution of fitness parameter strongly alters network topology. Besides, we demonstrate that in cases of homogeneous and power-law distributions of the fitness parameter network alters from assortative to non-correlated and then to disassortative. For these cases we studied network resistance to random-type failures and targeted attacks.

98