Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.library.biophys.msu.ru/rubin/2030826.pdf
Дата изменения: Thu Aug 10 17:34:04 2000
Дата индексирования: Mon Oct 1 20:04:04 2012
Кодировка:
XXVI

x

1.
. , , , , . 3) / , . | ( , , . ( , | . . . , ( ) | : 1) , ), . , . ) : 1) . , , , -

2)

,

3 , , 0,05 . pacc -

,

,

.

,

,

, ,

, 2)

:


x

1.

259 | ), , ( ). , | . ) 1) 2) 3) , , ), N,
g

( , , . : , ( , , .

, -

|

, G( ) , ( ,

3 ( , , ,

, .

XI). C, .. , . ,-

.

.

(R + R ; 2R) . -

. , Gs . , , GGG, ,

, G( Gs . , |a ) ( , , Gi . , G, , , , , ,

| ) ,

, , : , , Gs (
a

,

, . ) { -

b,

bGi -

a-

a2 .

(

. XXVI.1) GDP ,

GTP. .

-


260 : | A.
bg

XXVI.

(

. ).

. XXVI.1. ., 1994) , -1,4C, 2) Ca2+ , : , Ca2+ . (

-

| 1,4,5: 1) ,

,

C. , , -

x

2.

!
, , . ,

.

!

{

!
-

, , . , (1968)

, .. , .

a

D(i) .
t(i)

=(b =D(i) )f (i) (b=a):
2

:

,

t

i

b

i,

t

b=a,
(XXVI.2.1)

-


x

2.

261 ,
t(1)

(i =1) = b2=D(1) (1 ; a=b)2 =3:
t(1)

(XXVI.2.2) (XXVI.2.3) (XXVI.2.4) (XXVI.2.5)

b

a
= b2 =3D(1):

b
t(2)

a =(b2 =2D(2))ln(b=a)
t(3)

b

a
= b3 =3aD(3):

. XXVI.2. (XXVI.2.6). . , | . , . . XXVI.2, , . XXVI.2, I

a,

b

-

II


262 , | t(3)

XXVI.

,

a.
,

, : ,

b
,
t(3 2)

b,

,| , (XXVI.2.6)

. c . (XXVI.2.5)] b=a D(2) =D(3) .
t(3 2) =t(3) t

(a=b)(D(3) =D(2) ) 10:

(3 2)=

t(3)

b=a D(2) =D(3) t(3 2)=t(3) < 1.
, , K ; ! L + R ;; (L=R): ;

. XXVI.2, .
III

-

b=a
. ,

D(2) =D(3) .
|

-

. ( . . XIV):

|

,

(XXVI.2.7) (K = I=K , , . . , , 3) : . free |

K

|

L|
;1 ,

, R|

, K| -

).

108{10

11

,

m
1) , 2)

-

(

,

), ,

n
.

Bij (

i-

. . bound | ),

4) ,

Fi (

j-


x

2.

263 ),
m X j =1

i-

Li ] Bij ] i =1 ::: n:
,

: (XXVI.2.8)

Li ]= Fi ]+
,

Rj ]= rj ]+ Kij Kij = FB]ij ] ] i rj
(XXVI.2.9),

m X i=1

rj

jBij ]

Rj

: (XXVI.2.9)

j =1 ::: m:

(Fi + rj

!

Bij )
(XXVI.2.10) (XXVI.2.8)

i =1 ::: n j =1 ::: m: Bij

Li ]= Fi ]+ Rj ]= rj ]+

m X j =1 m X i=1

Kij rj ] Fi ] Kij rj ] Fi ]

i =1 ::: n j =1 ::: m:

(XXVI.2.11) (XXVI.2.12)

(XXVI.2.12) R rj ]= P j ] n 1+ Kij Fi ] i=1 , (XXVI.2.11), m P K R ]F ] ij j i j =1 Li ]= Fi ]+ P n 1+ Kai Fa ]
a=1

j =1 ::: m:

(XXVI.2.13)

i =1 ::: n:
,

(XXVI.2.14)

(H. A. Feldman, 1972): m m PB ] PK R ] ij ij j ki = i=1F ] = Li]] ; 1= i=1n Fi i 1+ P Kaj Fa ]
a=1

ki

(XXVI.2.8)

i-

-

i =1 ::: n:

(XXVI.2.15)

.


264 1. (i = 1) .

XXVI.

F ]= B ]=k, k = B ]= F ]= K R] ; K B ]

(XXVI.2.15) KR k = 1+ K ]F ] ( ( B ]= F ] B ]) , , , ,

(j = 1).

(XXVI.2.16)

).

L] R],

(XXVI.2.17) . R], . . F ] L].

: .

K.
.

K R],
-

. XXVI.3. ( (k B ]):

-

OC = R1 ]+ R2 ] OF = K11 R1 ]+ K12 R2 ] OA = R1 ] OB = R2 ] OD = K12 R2 ] OE = K11 R1 ]:

2.

j =2:

,

( i = 1)

(j = 2). (XXVI.2.15)

,

i =1,

-

K11 K12 B ]2 +(K11 + K12 )k B ]+ k2 ; ; K11 K12 ( R1 ]+ R2 ]) B ] ; (K11 R1 ]+ K12 R2 ])R =0: (XXVI.2.18) (k B ]) , R1 ] + R2 ], | K11 R1 ]+ K12 R2 ]. k = ;K11 ( B ] ; R1 ]) k = ;K12( B ] ; R2 ]), K11 R1 ] K12 R2 ], R1 ] R2 ] ( . XXVI.3). . ( )


x

3.

265 3. (i = 2) , , (XXVI.2.14) (XXVI.2.8) m P K R ]F ]
a=1

,

(j = 1). , .

,

-

m X

ij j i Bij ]= j=1 P n 1+ Kaj Fa ] j =1

i =1 ::: n:
(XXVI.2.19) ( , L2 ] = 0,

i =1 j = 1

)

1(

(XXVI.2.19)

]F ] B1 ]= 1+ KK1FR]+1K F ] : 11 22
2, ( . XXVI.4). 1 :

. XXVI.4. . 1: L2 ] )

(XXVI.2.20) 1 . 2, . . -

2 (L2 ) R] -

F2 ] F2 ]

B1 ] L2 ]

R]

-

K1 R B1 ]0 = 1+ K] F1 ]] : 1 F1

(XXVI.2.21)

50% 1=2 B1 ]0 . 4.

j-

(XXVI.2.20), , ,
x

2 (EC50 = F2 ]0 L2 ]0 ), ( . XXVI.3), . . (XXVI.2.20) (XXVI.2.21), K K2 = 1+EC1 F1 ] : (XXVI.2.22) 50 1 (i> 1, j> 1). (XXVI.2.15), (XXVI.2.16) j, , . ( , ) .

3.
( , . , -

, G-


266 , , , , , ,

XXVI.

G(.

) XV, XVI). , . . , ) ). ( |

, . (XXVI.3.1) -

( . x 2 . ). ( . XXVI.5. . ( . ,.. . XXVI.5). 1{2

:

c

.

D| c
0

@c = D@ 2 c @t @x2 , t| , x|

,

,

t =0 t

-

hxi = 0,
x. x2

c=c0 =(4pDt);1=2 exp(;x2 =4Dt): hxi hx2 i. (XXVI.3.2)

(XXVI.3.2)

h i=

Z1
;1

x2 (4pDt);1=2 exp(;x2 =4Dt)dx:
,

(XXVI.3.3)

hx2 i =2Dt

D = hx2 i=2t:

(XXVI.3.4)


x

3.

267 ( )

D = hx2 i=4t D = hx2 i=6t:
et al, 1976), (XXVI.3.5)

(XXVI.3.5) (XXVI.3.6) : (D. Axelrod (XXVI.3.7) 1,3).
2

D D = w2 =4t1=2]
g t1=2

g

|

w|
( . ,

, ), (

| (

D

-

. XXVI.4), , ( :

10; ( ..

10

/

)

.

,

),

. , ( .

TW 260=240.
).

, ,

, .

, (

h,

. )| , ). ,

. percolatio | .

p(
), .

p0 (
. , . .

, ,

. XXVI.6 p , ( ,

. XXVI.7). . -

(

)


268 ,

XXVI.

(..

, 1982 D. Stau er, 1985) ,

(XXVI.3.8)

f (p) (p ; pc )u u|
, ), . , =0 14 bB =0 5 m =1 16
b

f (x)

(

-

P (p) (p ; pc )b PB (p) (p ; pc )bB D(p) (p ; pc )m P (p) | PB (p) | , D(p)|
, ,

(XXVI.3.9) , -

.

. XXVI.6. |

.

. XXVI.7. , , ( , )

x|
, , ,

. ,

,

, |

p

. . ,| , . , -


x

3.

269 (XXVI.3.9) :

P ( x) ( x ; PB (x) (x ; D ( x) ( x ;
, , . , . .

x x x

c c c

)b )bB )m

=0 14 bB =0 5 m =1 16:
b

(XXVI.3.10 ) (XXVI.3.10 ) (XXVI.3.10 ) , , ,

( (..

, , , 1994, 1995)

, xc ,

,,

)

.. , .

,

x.

|

x
|

-

. . ( . (XXVI.3.8)] . (. +B , , , )
w

, , . .

-

. XXVI.8. , lg(x ; xc ). , )

lg ( ,

-

!

. XXVI.8) (XXVI.3.10 )).

,

PB (x).
,

, (.

A B,

A+

,


270
d A B] dt ,

XXVI.

A B,

x,

D(x) A] B ] ; K A B ]

0

x 6=0,

, ,

P0 ]|

,

A B ] D(x) A] B ]: P] x =1,
m A B ] (x ;xxc ) :

P
. .) lg(x ; xc ) ( , .

P0 =x],
(XXVI.3.10 ) (XXVI.3.11) . XXVI.9, ), , , . ,

R{Gs ( . XXVI.9, )

(..

R +Gs

!

R Gs lg( R Gs ])

(XXVI.3.10 )] | R Gs . XXVI.9, , m =11 01 (XXVI.3.10 )].

, , . XXVI.9. , ,

R{Gs (

() ,

-

). ,

| (

XXVI.3.11) .

v

-

A+B

!

AB

v = cA =tA + cB =tB

(XXVI.3.12)


x

3.

271

cA cB |
t

A|

AB
, , , ,

B tB |

B. a.

A
(

-

B.

b B

a,

,

b, A)
, : Nc,

N|

1 4 NcB = 3pb3 | c 1=4| NcA 3pb3 c , (XXVI.2.5)
t

.

A.
t

(3)

(XXVI.3.13) (XXVI.3.12), v =4pNa(DA + DB )cA cB : , , 1 1 2 2 NcB = pbA NcA = pbB : (XXVI.3.15) b, t v (XXVI.3.12) (Sh. Hardt, 1979): DA DB v =2pN + cc: ln(pNcB );1=2 =a] ln(pNcA );1=2 =a] A B (XXVI.3.14) | 4pNa(DA + DB ), cA cB , . , B (XXVI.3.16), . (XXVI.3.16)

A =(4

pNa

cB DA);

1

b3 A (3) =(4pNa B

cADB );

b3 , B

1

(XXVI.3.13) (XXVI.3.14) (XXVI.3.15) (XXVI.2.4), (XXVI.3.16) . ,

cA cB

, , , in vivo,

cA

cB
, . .

. , . ,

,

. , ,

cA cB

-

down- up-

-


272
x

XXVI.

4.
, , , . G,| | Ca2+ , . : . , -

,

,

. XXVI.10. Ca2+ .

-C, IP3 | , PIP2 | - 1,4,

| -1,4,5-

|

Ca2+ , . ( ).

,

,

<1

30

. , , , IP3

. ,| Ca2+ , C, -1,4,5IP3 , v1 b,

R GIP3
b

-

Ca2+ Ca2+ ,
b

-1,4( . XXVI.10). IP3 Ca2+ IP3 . IP3 -

.

pe


x

4.

273 : Z| Ca2+ IP3 , IP3 , , Ca2+ . Ca2+

Ca2+

Y|

v
IP3 -

0

kZ |
.

(

) IP3 -

: dZ = v + v b ; v + v + k Y ; kZ 0 1 2 3 f dt (XXVI.4.1) dY = v ; v ; k Y 2 3 f dt Ca2+ , , v2 | Ca2+ v3 | kf Y | Y Z kZ | Ca2+ Ca2+ IP3 Ca2+ 2+ , Ca Ca2+ IP3 . v2 Ca2+ v3 Ca2+ : n v2 = vM 2 K nZ+ Z n 2 (XXVI.4.2) p m v3 = vM 3 K mY+ Rm K pZ+ Z p :

Ca2+ , , . ,

vM

2

vM

R

A

3

K2 , KR

(XXVI.4.l)

KA |

n m p|
(XXVI.4.2) . (. . . ,

, , II),

-

kf , v1 , K2 , KR , vM 2 , vM
Ca2+ Ca2+ . XXVI.11 ( Ca2+ ,

3

29 1% < b < 77 5%, , .
b

, v0 , k, . Ca2+ (Z )

Ca2+ ,

,

30%, , 1 .

).

IP

3

Y.
1 , .

Z

.


274 , ( Ca2+ .

XXVI.

kZ

, . Ca .
2+

Ca2+ ), ,

K

10 ;

1

6 ;1 , , .

-

. XXVI.11,

Ca2+ .

Ca2+ ,

Y.

Ca2+ IP3

-

. XXVI.11. ( Goldbeter et al., 1990) : Ca2+ (Z , ) Ca2+ IP3 | (Y , ). : Z (K =6 ;1 ) ( . , . , , , . . Ca2+ K =10 ;1 ).

K

, -