Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.chem.msu.ru/rus/journals/membranes/29/html/mb293.pdf
Äàòà èçìåíåíèÿ: Tue Apr 4 21:57:32 2006
Äàòà èíäåêñèðîâàíèÿ: Sat Dec 22 18:22:19 2007
Êîäèðîâêà:
..

,

.. *

,..

,

..

*

. , . . , , . , : , , , , , . . « »

-

-

-

.

State-of-the-art novel surface water treatment techniques using nanofiltration membranes are reviewed. Modern approach to develop nanofiltration method is based on the use of tubular membranes free of stagnation areas providing low fouling operational mode. The paper presents possibilities of classic spiral wound design for surface water treatment. The research was conducted to determine particulate and organic fouling rates. New ways to improve open-channel configuration of spiral wound modules are outlined to escape delta pressure increase due to fouling. The results of presented research are used to develop new nanofiltration surface water treatment techniques based on modified spiral wound open-channel membrane elements, using optimum flow rates and flushing modes. Key-words: nanofiltration, pretreatment, suspended solids, color, open-channel, spiral wound membranes, membrane flushing.

« ,

» ,

. , . , , . . , ), ( , ),

, ( ( , 500 ­ 20 000 ). -

«

»

150 ­ 200

, . , , 2006, 1 (29)

, .
20
. .

(


..

,

..

,

..

,

..

,

,

) .

,

-

. ( , ). « . Zenon ( Trisep ( ) . . : « » « , » , . ( 70 ­ 95%) 50 ­ 80%), ( , , ), . » . ,

« ,

»

»

), «-

. « , »

), Norit ( ,



»

, , », , , -

.

( 50 ­ 80%).

« ­ [3, 4]. «Norit» , ( , [1, 2]. » . ) « ,

, , [1 ­ 4]. , , . ( , , . ,

, , . , . , ,

-

,

« , . ,
. . , 2006,

» 1 (29)

« [5]. ,

» ,

21


: , [6]. « [5]. , , , . . [9]. . « . [7] « ( , . , . , . ( ) , . , ­ . . « » . . [7, 8], « . [10, 11]. » , , , , », ­ , , . 10]. , « « » , , » , . 1). » , » . ­ . ,

,

-

,

» , «[9, -

[7].

» «

, [10], -

-

-

22

.

.

, 2006,

1 (29)


..

,

..

,

..

,

..

, ( ) 1) ; 2) ; 3) ; 4) ; 5) . 1812 . : -

(

36

, ). :

300

), (

; ;
.1 -

; ( ); ( ). [7, 12] , . , . . 1. . 2. -

.

.

, 2006,

1 (29)

23


, 1 2
.1

, / , /

,

/

, /

,

2/ 20,4 22,3

6,2 5,9

5,5 5,4

696 709

7,1 7,09

39,1 37,8

40,6 43,7

(5), , [8]. (2) (3). (4), (6). (1). (1) 1. .

-

-

. .

(5), (3), (1). , (3) (1), . , : .

-

.2.

. . , (1), . . 3.
;4­ ;6­ ;7­ ;2­ ;3­

.1­ ;5­ -

-

. ( (4)
24
. . , 2006, 1 (29)

) (5)

-


..

,

..

,

..

,

..

3 4040. . 1. 2.

3.

5 ­ 10 . .4. , : ; ; . . , . 3 . , . . 5. .6 ( /) 100 . 25 , . -

-

2, 5, 10 .
.3. .) ;) -

,

-

( -

. 7). , « , 1­2 . » -

4,5

.. 60 ,

20 , 25, 100 360 / .

.

.

, 2006,

1 (29)

25


. 1. ( . 7). ( . .) , . ,

. 8,

: . ,

,

,« [5, 13, 14].

»

,

-

. 4. .) ;) ;)

;) -

26

.

.

, 2006,

1 (29)


..

,

..

,

..

,

..

, . , , [7, 15]. . . , ( . « » , . ) » (420­500 « , », « , ) ( . 10). « .9 , [11]. .

-

»

.5 « ;) 1812 » :

:)

-

.

.

, 2006,

1 (29)

27


1,2 «

6

. » , : ,

, . « , . . , : « » » -

( 2.

. 11, 12). . 4,

.

.6 ) ;) ( 100 / )

. -

28

.

.

, 2006,

1 (29)


..

,

..

,

..

,

..

. , , , 3. : « »

: , . ­ ­ , :

: ( ), ( ( . . 7). )

-

, ,

; « ­ ; ­ . 4. » ; ,

. , . 200­300 ­ 15­30 , , .. . . « » : , ( , ). , , . -

( . 6 ). ( . 6 ),

: -

.7 .) ;) -

.

.

, 2006,

1 (29)

29


. . , ( ) , . , -

1. ( 50 . . /)

-

( , ,

. 5), , .

. 2. . 3. , ; : , , , -

, . 5. : ( , . « ( . 13). , , » ( ), ), ; ; :

.8

30

.

.

, 2006,

1 (29)


..

,

..

,

..

,

..

, ; , , . 4.
.9. , NTR-7410 (Nitto-Denko) [11] -

,

, -

­ : , . ,

;

.10.
. . [15] -

, ,% , 117 11 1 6 2 6 3 80 550 60 200 .11. 55 Sm 630 110

.

.

, 2006,

1 (29)

31


. 12

Futselaar M. et all. Direct capillary nanofiltration for surface water. // Desalination. V. 157 (2003), p. 135136. 2. Futselaar H., Schonewille H., Meer W. Direct capillary nanofiltration for surface water. (Presented at the European Conference on Desalination and the Environment: Fresh Water for All, Malta, 4­8 May 2003. EDS, IDA) // Desalination. 2003. Vol.157, p. 135-136. 3. Bruggen B., Hawrijk I., Cornelissen E., Vandecasteele C. Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes. // Separation and Purification Technology. 2003. 4. BonnÈ P.A.C., Hiemstra P., Hoek J.P., Hofman J.A.M.H. Is direct nanofiltration with air flush an alternative for household water production for Amsterdam? // Desalination. 2002. V. 152, p. 263-269. 5. Trisep http://www.trisep.com 6. PIC Membranes http://www.pcimem.com 7. Pervov Alexei G., Melnikov Audrey G. The determination of the required foulant removal degree in RO feed pretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling. 8. Pervov A.G. A simplified RO process design based
1.

. 13

32

.

.

, 2006,

1 (29)


..

,

..

,

..

,

..

on understanding of fouling mechanisms. // Desalination 1999, Vol. 126. 9. Riddle Richard A. Open channel ultrafiltration for reverse osmosis pretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling. 10. ..« », 2108142, . 10.04.1998 . 11. Irvine Ed, Welch David, Smith Alan, Rachwal Tony. Nanofiltration for colour removal - 8 years operational experience in Scotland. // Proc. of the Conf. on Membranes in Drinking and Industrial Water Production. Paris, France, 3-6 October 2000. V 1, p. 247-255. 12. Pervov A.G. Scale formation prognosis and cleaning procedure schedules in reverse osmosis operation. // Desalination 1991, Vol. 83. 13. Hilal Nidal, Al-Khatib Laila, Atkin Brian P., Kochkodan Victor, Potapchenko Nelya. Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM // Desalination 2003, Vol. 156, p. 65-72. 14. Hilala Nidal, Mohammad A. Wahab, Atkina Brian, Darwish Naif A. Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: A review // Desalination 2003, Vol. 157, p. 137-144. 15. . ., . ., . ., .. . // . . . 5. .: 2004, . 99-106.

.

.

, 2006,

1 (29)

33