Contents |
|
Classification of drugs |
xiii |
1.Drugs and the medicinal chemist |
1 |
2.The why and the wherefore |
9 |
2.1.Why should drugs work? |
9 |
2.2.Where do drugs work? |
9 |
3.Protein structure |
15 |
3.1.The primary structure of proteins |
15 |
3.2.The secondary structure of proteins |
16 |
3.2.1.The alpha helix |
16 |
3.2.2.The beta-pleated sheet |
16 |
3.3.The tertiary structure of proteins |
16 |
3.3.1.Covalent bonds |
21 |
3.3.2.Ionic bonds |
21 |
3.3.3.Hydrogen bonds |
21 |
3.3.4.Van der Waals bonds |
22 |
3.3.5.Repulsive forces |
22 |
3.3.6.Relative importance of
binding forces |
23 |
3.4.The quaternary structure of proteins |
25 |
3.5.Conclusion |
26 |
4.Drug action at enzymes |
27 |
4.1.Enzymes as catalysts |
27 |
4.2.How do catalysts lower activation
energies? |
28 |
4.3.The active site of an enzyme |
30 |
4.4.Substrate binding at an active site |
31 |
4.4.1.The binding forces |
31 |
4.4.2.Competitive (reversible)
inhibitors |
32 |
4.4.3.Non-competitive
(irreversible) inhibitors |
34 |
4.4.4. Non-competitive,
reversible (allosteric) inhibitors |
35 |
4.5.The catalytic role of enzymes |
37 |
4.5.1.Binding interactions |
37 |
4.5.2.Acid/base catalysis |
39 |
4.5.3.Nucleophilic groups |
39 |
4.6.Medicinal uses of enzyme inhibitors |
44 |
5.Drug action at receptors |
45 |
5.1.The receptor role |
45 |
5.2.Neurotransmitters |
47 |
5.3.Receptors |
49 |
5.4 How does the message get
received? |
50 |
5.4.1.Ion channels and their
control |
50 |
5.4.2 Membrane-bound enzymes
- activation/deactivation |
52 |
5.5. How does a receptor change
shape? |
54 |
5.6. The design of agonists |
56 |
5.6.1.Binding groups |
57 |
5.6.2.Position of binding
groups |
58 |
5.6.3. Size and shape |
60 |
5.7. The design of antagonists |
61 |
5.7.1. Antagonists acting at the
binding site |
61 |
5.7.2. Antagonists acting
outwith the binding site |
62 |
5.8.Partial agonists |
63 |
5.9.Desensitization |
65 |
5.10. Tolerance and dependence |
65 |
6. Nucleic acids |
68 |
6.1. Structure of DNA |
68 |
6.1.1.The primary structure of
DNA |
68 |
6.1.2. The secondary structure
of DNA |
70 |
6.1.3. The tertiary structure of
DNA |
71 |
6.2. Drugs acting on DNA |
72 |
6.2.1.Intercalating agents |
72 |
6.2.2.Alkylating agents |
74 |
6.2.3.Drugs acting by chain
"cutting" |
76 |
6.3.Ribonucleic acid |
77 |
6.4.Drugs acting on RNA |
80 |
6.5.Summary |
81 |
7. Drug development |
82 |
7.1
Screening of natural products |
82 |
7.2
Isolation and purification |
83 |
7.3
Structure determination |
83 |
7.4
Structure-activity relationships |
84 |
7.4.1
The binding role of hydroxyl groups |
86 |
7.4.2
The binding role of ammo groups |
88 |
7.4.3
The binding role of aromatic rings |
88 |
7.4.4
The binding role of double bonds |
89 |
7.5
Synthetic analogues |
89 |
7.5.1
Variation of substituents |
90 |
7.5.2
Extension of the structure |
92 |
7.5.3
Chain extensions/contractions |
93 |
7.5.4
Ring expansions/contractions |
93 |
7.5.5
Ring variations |
93 |
7.5.6
Isosteres |
94 |
7.5.7
Simplification of the structure |
95 |
7.5.8
Rigidification of the structure |
96 |
7.6.
Receptor theories |
97 |
7.7 The
elements of luck and inspiration |
101 |
7.8 Lead
compounds |
103 |
7.9.A case
study - oxamniquine |
104 |
8. Pharmacodynamics |
111 |
8.1. Drug
distribution and 'survival' |
111 |
8.1.1.Chemical
stability |
112 |
8.1.2.Metabolic
stability |
112 |
8.1.3.Hydrophilic/hydrophobic
balance |
113 |
8.2.Drug
dose levels |
115 |
8.3.Drug
design for pharmacokinetic problems |
116 |
8.3.1.Variation
of substituents |
116 |
8.3.2.Stereoelectronic
modifications |
116 |
8.3.3.Metabolic
blockers |
117 |
8.3.4.Removal
of susceptible metabolic groups |
117 |
8.3.5.Prodrugs |
119 |
8.3.6.Bioisosteres |
123 |
8.3.7."Sentry"
drugs - synergism |
124 |
8.3.8."Search
and destroy" drugs |
125 |
8.3.9.Self-destruct
drugs |
126 |
8.3.10.
Delivery systems |
126 |
8.4. Testing
of drugs |
126 |
8.5.Neurotransmitters
as drugs? |
127 |
9. Quantitative structure-activity relationships
(QSAR) |
128 |
9.1.Introduction |
128 |
9.2.Graphs
and equations |
129 |
9.3.Physicochemical
properties |
130 |
9.3.1.Hydrophobicity |
130 |
9.3.2.Electronic
effects |
136 |
9.3.3.Steric
factors |
140 |
9.3.4.Other
physicochemical parameters |
141 |
9.4.Hansch
equation |
141 |
9.5.The
Craig plot |
143 |
9.6. The
Topliss scheme |
145 |
9.7.Bioisosteres |
148 |
9.8.Planning
a QSAR study |
149 |
9.9.Case
study |
150 |
10. Antibacterial agents |
154 |
10.1. The
history of antibacterial agents |
154 |
10.2. The
bacterial cell |
157 |
10.3.Mechanisms
of antibacterial action |
158 |
10.4.Antibacterial
agents which act against cell metabolism (antimetabolites) |
159 |
10.4.1.Sulf
onamides |
159 |
10.4.2.Examples
of other antimetabolites |
164 |
10.5.
Antibacterial agents which inhibit cell wall synthesis |
166 |
10.5.1.Penicillins |
166 |
10.5.2.Cephalosporins |
181 |
10.5.3.Novel
p-lactam antibiotics |
188 |
10.5.4.The
mechanism of action of penicillins and cephalosporins |
192 |
10.6.
Antibacterial agents which act on the plasma membrane structure |
195 |
10.7.Antibacterial
agents which impair protein synthesis |
198 |
10.7.1.Rifamycins |
198 |
10.7.2.Aminoglycosides |
199 |
10.7.3.Tetracyclines |
199 |
10.7.4.Chloramphenicol
|
200 |
10.7.5.Macrolides |
201 |
10.8. Agents
which act on nucleic acid transcription and replication |
201 |
10.8.1.Quinolones
and fluoroquinolones |
201 |
10.8.2.Aminoacridines |
202 |
10.9.Drug
resistance |
203 |
10.9.1.Drug
resistance by mutation |
203 |
10.9.2.Drug
resistance by genetic transfer |
203 |
10.9.3.Other
factors affecting drug resistance |
204 |
11. The peripheral nervous system -
cholinergics, anticholinergics, and anticholinesterases |
205 |
11.1.
The peripheral nervous system |
206 |
11.2.
Motor nerves of the peripheral nervous system |
206 |
11.2.1.The
somatic motor nervous system |
207 |
11.2.2.The
autonomic motor nervous system |
207 |
11.3. The neurotransmitters |
209 |
11.4.Actions of the
peripheral nervous system |
209 |
11.5.The cholinergic system |
210 |
11.6.Agonists at the
cholinergic receptor |
212 |
11.7.Acetylcholine -
structure, SAR, and receptor binding |
214 |
11.8.The instability of
acetylcholine |
218 |
11.9.Design of acetylcholine
analogues |
219 |
11.9.1.Steric
hindrance |
219 |
11.9.2.Electronic
effects |
220 |
11.9.3.Combining
steric and electronic effects |
221 |
11.10 Clinical uses for
cholinergic agonists |
222 |
11.11 Antagonists of the
muscarinic cholinergic receptor |
222 |
11.11.1
Actions and uses of muscarinic antagonists |
222 |
11.11.2
Muscarinic antagonists |
223 |
11.12 Antagonists of the
nicotinic cholinergic receptor |
228 |
11.12.1.Applications
of nicotinic antagonists |
228 |
11.12.2.
Nicotinic antagonists |
229 |
11.13 Other cholinergic
antagonists |
233 |
11.14 The nicotinic receptor
- structure |
234 |
11.15 The muscarinic receptor
- structure |
234 |
11.16 Anticholinesterases and
acetylcholinesterase |
235 |
11.16.1
Effect of anticholinesterases |
235 |
11.16.2
Structure of the acetylcholinesterase enzyme |
236 |
11.16.3
The active site of acetylcholinesterase |
236 |
11.17
An ticholinesterase drugs |
238 |
11.17.1
The carbamates |
238 |
11.17.2
Organophosphorus compounds |
242 |
11.18
Pralidoxime - an organophosphate antidote |
244 |
12. The opium analgesics |
246 |
12.1.Introduction |
246 |
12.2.Morphine |
249 |
12.2.1.Structure
and properties |
249 |
12.2.2.Structure-activity
relationships |
250 |
12.3.Development of morphine
analogues |
255 |
12.3.1.Variation
of substituents |
256 |
12.3.2.Drug
extension |
256 |
12.3.3.Simplification
or drug dissection |
259 |
12.3.4.Rigidification |
265 |
12.4 Receptor theory of
analgesics |
269 |
12.4.1.Beckett-Casy
hypothesis |
269 |
12.4.2.Multiple
analgesic receptors |
271 |
12.5.Agonists and antagonists |
273 |
12.6.Enkephalins and
endorphins |
275 |
12.6.1.Naturally
occurring enkephalins and endorphins |
275 |
12.6.2.Analogues
of enkephalins |
275 |
12.7.Receptor mechanisms |
276 |
12.7.1.The
mu receptor () |
277 |
12.7.2.The
kappa receptor (k) |
278 |
12.7.3
The delta receptor () |
278 |
12.7.4
The sigma receptor () |
279 |
12.8 The future |
279 |
13. Cimetidine - a rational approach to drug
design |
281 |
13.1.Introduction |
281 |
13.2.In
the beginning - ulcer therapy in 1964 |
282 |
13.3.Histamine |
284 |
13.4.The
theory - two histamine receptors? |
284 |
13.5.Searching
for a lead - histamine |
285 |
13.6.Searching
for a lead - Afa-guanylhistamine |
286 |
13.7.Developing
the lead - a chelation bonding theory |
290 |
13.8.From
partial agonist to antagonist - the development of burimamide |
292 |
13.9.Development
of metiamide |
294 |
13.10.Development
of cimetidine |
298 |
13.11.Cimetidine |
300 |
13.11.1.Biological
activity of cimetidine |
300 |
13.11.2.Structure
and activity of cimetidine |
301 |
13.11.3.Metabolism
of cimetidine |
301 |
13.12.Further studies -
cimetidine analogues |
302 |
13.12.1.Conformational
isomers |
302 |
13.12.2.Desolvation |
303 |
13.13.Variation of the
imidazole ring - ranitidine |
308 |
13.14.Famotidine and
nizatidine |
309 |
13.15. H2 antagonists
with prolonged activity |
310 |
13.16.Comparison of HI
and H2 antagonists |
311 |
13.17.The H2 receptor
and H2 antagonists |
311 |
Appendix 1 The essential amino acids |
313 |
Appendix 2 The action of nerves |
314 |
Appendix 3 Secondary messengers |
320 |
Appendix 4 Bacteria and bacterial nomenclature |
326 |
Glossary |
328 |
Further reading |
330 |
Index |
331 |
Copyright (C) Graham L.Patrick "An Introduction to Midicinal Chemistry" Oxford University Press, 1995
Copyright (C) HTML и PDF-оформление Петросян И.В., 2006г