Special Classes of l-rings and Anderson-Divinsky-Sulinski Lemma / Shavgulidze N.E. // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2010. ? 2. P. 42-44 [Moscow Univ. Math. Bulletin. Vol. 65, No 2, 2010. P. 76-77]. Special classes of lattice-ordered rings (l-rings) are studied and for special radicals of l-rings the Anderson-Divinsky-Sulinski lemma is proved, i.e., it is proved that if ρ is a special radical in the class of l-rings and I is an l-ideal of an l-ring R, then ρ(I) is an l-ideal of the l-ring R and ρ(I) = I ∩ρ(R).
Key words: lattice-ordered ring, special radical of an l-ring,
Anderson-Divinsky-Sulinski lemma.
|