Документ взят из кэша поисковой машины. Адрес оригинального документа : http://vestnik.math.msu.su/en/DATA/2014/2/node4
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 22:33:31 2016
Кодировка: Windows-1251
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
Вестник Московского Университета. Математика, Механика - Содержание

Rings of particular rings with a big center / D. V. Zlydnev. //Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2014. ? 2. P. 25-30 [Moscow Univ. Math. Bulletin. Vol. 69, N 2, 2014.].

А ring R is called IIC-ring if any nonzero ideal of $R$ has nonzero intersection with the center of R. We consider certain results about rings of quotients of semiprime IIC-rings and show by examples that these properties are not conserved in the case of arbitrary IIC-rings. We prove more general properties of IIC-rings which concern its rings of quotients.

Key words: center of ring, IIC-ring, right-bounded ring, full ring of quotients, symmetric ring of quotients.

? 2/2014