УДК 515.12
Связи между некоторыми свойствами
топологических групп и их наростов /Архангельский А.В. // Вестн. Моск. ун-та. Сер. 1, Математика. Механика.
C. 4-10.
Следуя классической работе Хенриксена и Исбелла, говорят, что пространство
X обладает некоторым свойством в бесконечности, если для
каждого компактного расширения bX пространства X нарост
обладает свойством .
Нас интересует, когда пространство топологической
группы обладает тем или иным свойством в бесконечности. В частности, мы выясняем,
как влияет на свойства топологической группы ее паракомпактность в бесконечности.
Основную роль при этом играют понятия p-пространства,
пространства точечно-счетного типа, числа Суслина и некоторые другие кардинальные инварианты.
Установлено, что свободная топологическая группа никакого бесконечного
компакта не является -метакомпактной в бесконечности и что если топологическая группа
имеет счетный нарост в каком-нибудь компактном хаусдорфовом расширении, то она
либо локально компактна, либо сепарабельна и метризуема. Показано, что
известное пространство ``стрелка'' не является наростом никакой топологической группы
в компактном расширении.
Библиогр. 10.