Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://top.sinp.msu.ru/phd.pdf
Äàòà èçìåíåíèÿ: Mon Feb 5 21:17:42 2007
Äàòà èíäåêñèðîâàíèÿ: Sat Feb 2 21:39:49 2013
Êîäèðîâêà:
-

.. ..

"

D.

t-

Tevatron

01.04.23 {

t-

."

: ,
. .

.

.

- 2001


4 1
1.1 1.2 1.3 1.4 ........ . ....... ...... .. . .. .. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 10 21 27

9

2
2.1 2.2 2.3 2.4 2.5 2.6

-

................... .................. W tb ................ , ... ...... .................

.

W tb

. . . . . 33 . . . . . 34 . . . . . 37 . . . . . 38 . . . . . 40 . . . . . 52

33

3
3.1 3.2 3.3 3.4 3.2.1 3.2.2 3.2.3 3.3.1 3.3.2

............. .................. .. ...... ....... .................... ........ 2

Tevatron (Run I).

D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . .

. . . . . . . . ....................

53

53 55 56 61 64 64 66 67 74


4
4.1 4.2

Tevatron.
4.1.1 4.1.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3.1 4.3.2 4.3.3 D

D

. . . .

.................... . .............. ............

75

76 80 83 84

........................ ............ .... ....... . . ........ ............. . . . . . . . . . .

. 85 . 86 . 87 . 92 . . . . .

. . . . . . . . . . . . . . . . . . . 98 98 104 104 104 115 t115 . . . . . . . . . . . . . . . . . . . . . . 115

4.3 4.4

5
5.1 5.2 5.3 5.4

.

LEP II
....... .......... . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

124

124 126 130 132

135 137 138

3


( 1995 . , , , , . Tevatron ( ) ,

). -

. 3.

{ . . -

.

3 , , , . , , 4 , , ,

. " . . "

.

,

18 . (V ? A)" ". -


-

(mt = 174 ,

.

).

. , -

. . -

,, -

, " " .

C . , , W tb .

1

. . ( , ).

Tevatron LHC, CompHEP , . " " " , -

SingleTop. 3 4. , , . , " " " "{ " " . NLO

(NLO) . NLO " . ""

5


.

(W j j , j j bb, j j b) . 11]-15]. . (V ? A) . , , , . .

;

.

-

Tevatron LHC.

W tb. .
Tevatron (0.1)

b!s

CLEO (V + A) , .

Tevatron (Run II) LHC. . 16]. (Run I, 1992-1996 . .). t ! W b. . a LHC

t t.
D

t

W
.

100% .

pp ! l; ; b; j; (j ) ;
6


,

l = e;

j{
. D

. . W-

. . . . , . , ( -

b, , . . , . . ). . 1:500.

95% 17], 18].

b-

.

b. , , , .

. 2 20 -

W
(2

. 7

5


W ).
.

, . , . . 19]-24] CDF, . -

,

,

, .

. ,

b-

LEP II . ( . II. 1996 . e 25]. . 115 . , LEP II, :

e+e? ! bb,

ZH
.

ps
, Pythia)

H. LEP

, p(s) M

8


1 1.1

t, {

Tevatron 1]. tt -

1995 ., CDF D0 . . 26].

) 27],

V
(V ? A) 28]. (

tb

( -

) 30] W tb , ,

-

W tb
,

.

,

,a

(

FCNC

-

29],

- ) 31]. 9

W
t-

0


, t. ,

2 , . D0 TEVATRON. 11], 12].
-

.

, III, IV

-

1.2

.

; 1.1 1.2. pp (Tevatron) pp (LHC) s. t; { e LHC 32]. , , , , . Tevatron (1.1 a) . { 5% (1.1 b)

W tb

.

t-

100% ; 30%. tt t, (1.3 a). (1.3 a) , -

W gA .

Tevatron,

e tW

1.2, ,

qb ! q0t (
(1.3); 10


u

d

u

d

u W

b

W t b t b (b) ug tdb g

W b

d

t (a) ud tb

g

t

s-

. 1.1:

, (b) t-

.

t-

(a)

. 1.2:

W

.

t-

-

11


(1.3 b)
u d u W b g

(1.3 c).
d u W t W

d

-t

+
b g

t

b

b

b

(a)

(b)

(c)

. 1.3: (a) ; (b) ; (c)

b. -

(

) SingleTop Tevatron (Run I). LHC (

tSingleTop)

P,
b T

Teavatron

, CompHEP ,

. t(SingleTop I), . CompHEP3.0 33] PYTHIA5.7/JETSET7.4 34] . BASES/SPRING 36]. CTEQ3m Q = (Mt =2)
2

.
2

JETSET7.4. tLO -

Q2

=M

2 t

. NLO

s(LO) ,

Q

2

(NLO). 12

37], 38] s-


37] tMt = 175

:

38].

s? tbX + c: :) = pNLO(pp8(p) !TEVATRcON) = 0:78 0:09 pb ( s = 1: ps = 2 ;; TEVATRON) = 0:88 0:05 pb ( p = 10:2 0:6 pb ( s = 14 ; LHC); t? + c: :) = NLO ( p ps =pp(8 ) ! ;tqbX ATRcON) TEV = 1:79 0:34 pb ( p 1: = 2:44 0:46 pb ( s = 2 ; TEVATRON) p = 245 27 pb ( s = 14 ; LHC) Mt . Q
2

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) ,

(Q

W

=2)

2

(2Q

W

)

2

t, : t-

.

40] ONETOP, TopRex, PYTHIA CompHEP ( , . . , PYTHIA. { ,

, 39, MADGRAPH, ). -

, .

,

,

-

. .

s,

,

pp ! tbg + X , ,
13

NLO -


,

. ,

,

tLO NLO .

.

(V ? A) . ,

W tb

-

pp

.

tt
. W tb . , . ,

-

tt

. , . ,LHC

( { SingleTop II) Tevatron (Run II). C . TEVATRON, CompHEP. . 1.7, 1.8, 1.9, 1.10 . , 41] , , , 14 ,

,

PYTHIA6.1 .

cu

;u d


. 20 (2 ! 3 R(j; j 0) =

,P
q> T

p

. pp ! tb + jet + X 73:8pb S ubprocesses : ug ! dtb ug ! stb dg ! ctb gu ! dtb gu ! stb gd ! ctb cg ! dtb cg ! stb sg ! ctb gc ! dtb gc ! stb gs ! ctb dg ! utb gd ! utb sg ! utb gs ! utb 59:7 pb 6:6 pb 5:4 pb

), '+
2

2

> 0:5.

';

:P

b> T

10

-

(1.7)

ud us dc sc du su cd cs

! ! ! ! ! ! ! !

g tb g tb g tb g tb g tb g tb g tb g tb 2:2 pb
(1.8)

pp ! tb + jet + X 46:2pb S ubprocesses : ug ! dtb ug ! stb dg ! ctb gu ! dtb g u ! st b gd ! ctb cg ! dtb cg ! stb sg ! ctb gc ! dtb gc ! stb gs ! ctb dg ! utb gd ! utb sg ! utb gs ! utb 34:4 pb 4:4 pb 6:2 pb

ud us dc sc du su cd cs

! ! ! ! ! ! ! !

gtb gtb gtb gtb gtb gtb gtb gtb 1:3 pb
(1.9)

pp ! tb + X 4:9pb S ubprocesses : du ! tb ud ! t b dc ! tb cd ! tb su ! tb us ! tb sc ! tb cs ! tb pp ! tb + X 3:1pb S ubprocesses : du ! tb ud ! tb cd ! tb sc ! tb su ! tb us ! tb dc ! tb cs ! tb
15

(1.10)


, .
1/N dN/dPT(t)

LHC 20%
-

,

1.7

.

-

CompHEP and Pythia for the tqb process, without cuts (s = 14 TeV)
1/N dN/dyt d/dPT(t)

CompHEP and Pythia for the tqb process, PTb>20 GeV (s = 14 TeV)
d/dyt

0.06

0.03

4 3 2

3

0.04

0.02

2

0.02

0.01 1

1

0 0
1/N dN/dPT(q)

0 50 100 150 200 PT(t), [GeV]
1/N dN/dyq

0 -5 -2.5 0 2.5 5 0 50 100

0 150 200 PT(t), [GeV]
d/dyq

-5

-2.5

0

2.5

5

yt
d/dPT(q)

yt

0.06

0.03

0.04

0.02

4

2

0.02

0.01

2

1

0 50
1/N dN/dPT(b)

0 100 150 PT(q), [GeV]
1/N dN/dyb,

0 -5 -2.5 0 2.5 5 50

0 100 150 PT(q), [GeV]
d/dyb,

-5

-2.5

0

2.5

5

yq
d/dPT(b)

yq
4 3

10 7.5 5 2.5 0

0.3 0.2 0.1 0 0 20 40 60 80 PT(b), [GeV]

0.03 0.02 0.01 0 -5 -2.5 0 2.5 5

2 1 0 20 40 60 80 100 PT(b), [GeV] -5 -2.5 0 2.5 5

yb

yb

. 1.4: PT PYTHIA . .

y, SingleTop (1.7, 1.8),
-

. 1.5: CompHEP PYTHIA (1.7, 1.8) P PTb 20 .

q T

20

b
,

2!3( . 16

.

1.1b),

b
.

t
( , -

y


CompHEP (tqb+ISR) and Pythia (tq+ISR) processes, PTb cut = 20 GeV

d/dPT(t), [pb/GeV]

d/dyt, [pb]
0 50 100 150 200 PT(t), [GeV]

10

6 4 2

5

0

0 -5 -2.5 0 2.5 5

yt

d/dPT(q), [pb/GeV]

d/dyq, [pb]
50 100 150 PT(q), [GeV]

15

6

10

4

5

2

0

0 -5 -2.5 0 2.5 5

yq

d/dPT(b), [pb/GeV]

d/dyb, [pb]
0 20 40 60 PT(b), [GeV]

4

10

2 1 0 -5 -2.5 0 2.5 5

yb

. 1.6:

P 20 , cut(P ) = 20 .
b T

q T

CompHEP PYTHIA , PYTHIA 2!2 , , .

t. 2!3 ,

42]),

b b
, ,

,

bb b
, 17 ,

b.

-


CompHEP (tqb+ISR) and Pythia (tq+ISR) processes, PTb cut = 10 GeV

d/dPT(t), [pb/GeV]

d/dyt, [pb]
0 50 100 150 200 PT(t), [GeV]

6 4 2 0 -5 -2.5 0 2.5 5

10

5

0

yt

d/dPT(q), [pb/GeV]

d/dyq, [pb]
50 100 150 PT(q), [GeV]

6

10

4

5

2

0

0 -5 -2.5 0 2.5 5

yq

d/dPT(b), [pb/GeV]

d/dyb, [pb]
0 20 40 60 PT(b), [GeV]

6

10

4

2 1 0 -5 -2.5 0 2.5 5

yb

. 1.7:

P 20 , cut(P ) = 10 .
b T

q T

CompHEP PYTHIA , .

bb b. pp ! tq + X (
, 18 ,

, SingleTop MSUB = 83) (

,

. )

, PYTHIA PYTHIA -

.

-

b

.

,


, , PYTHIA 224 pb 5%. 1.4 , , SingleTop. , .

. 235 pb

-

b
.

, PT , PYTHIA, , , , ,

t b

SingleTop

P

T

y PYTHIA. ;

.

,

b
? { . . , , \ " NLO 245 pb. -

. (116 pb) PYTHIA (25.4 pb). 1.5, PYTHIA , , b , , . NLO "

PTb > 20

PYTHIA. , , :

b
-

t\

. NLO (

2!2 PYTHIA 2!3 CompHEP P b >20 T

) = (NLO) ?

2!3 CompHEP P b >cut(P b ) T T

(

)j

;

2!3 CompHEP P b >10 T

(

(

)j

)j

q ;PT >20 q ;PT >20

88:7 pb 124 pb: 19


, P > cut(PTb ),
b T

\ .

" cut(PTb ), . ,

cut(PTb ) = 20 PTb . b ) = 10 cut(PT
\

SingleTop, PYTHIA PTb < cut(PTb ). PTb 1.6 1.7. . . , ,

\

"

, -

P

b T

"\

"

The distributions of cos(e,q) in the rest frame of top

1/N dN/dcos(e,q)

0.035 0.03

0.025 0.02

0.015 0.01 0.005 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cos(e,q)

1/N dN/dcos(e,q)

0.035 0.03

0.025 0.02

0.015 0.01 0.005 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 cos(e,q)

t

. 1.8:

t-

W bbj
20

. -


2!3

,

SingleTop

.

:

-

W; b

p; p ! t; q; b ! W; b; q; b ! l; l ; b; q; b; , 100% W.
2!5( t ! Wb . , 44]

t. W
2 ! 3, .

1.8 ), -

PYTHIA, W ),

2!4(

p; p ! W; b; b; j (j = u; d; c; s; g). 43] dN d cos , (1 + cos ) =2 SingleTop ; (1.11) -

.

, CMS (LHC) .
1.3

.

, (

: e ( ) + ET + 2(3) 6 , 21

,

(1.12) ): W + 2(3) , tt

j (j )bb .


. Tevatron 7500 pb ) ,

W jj

, 15] LHC. {

32

u; db.

1240 pb

b

b( b
. 0.5% . W bb ( W bb W j j 1.9 ),
b W u; c u W u; c; t b

b,
s

50% .

,

.

,

b
(
b g

45]

,

b

,
u

2

).

.
u d W u b g b

W bb
W

u W

d

d (a)

b

d

b (b)

d

W

u Z; u

b

u W b Z;

W

u d

W

u W H

W

b

Z;

b

b

d

W

d (c)

b

d

b

d (d)

b

LHC Rj j Rj j

(
(ej ) (ej )

. 1.9: 1.9 a)

> 0:5, ptj et > 10 > 0:5, ptj et > 20
.

W bb 8.7 pb : Tevatron; LHC. ( 1.9 c) WZ
22

. Tevatron 30 pb 1% -


46], (LHC).

2.5 pb

bb . Tevatron 30 pb W Z. W,
. ,

WZ LHC. NLO k=1.33 (1.55) Tevatron :
, . , , LHC. ( -

, .

,

48],

NLO 7.5 pb Tevatron 760 pb

. j bb j j bb . 1.1, 1.2. process g g ! g bb gu(ug) ! ubb gu(ug) ! ubb gd(dg) ! dbb gs(sg) ! sbb gd(dg) ! dbb gs(sg) ! sbb dd(dd) ! gbb uu(uu) ! gbb Total Tevatron 1:64 105 1:80 104 2:50 104 9:00 103 1:97 103 3:21 103 1:97 103 5:67 102 1:31 103 2:40 105 (pb) (2:50 (1:80 (3:21 (1:97 (9:00 (1:97 (1:25 (8:61 pb 10 10 10 10 10 10 10 10
3 4 3 3 3 3 2 1

, . 0.01-0.03 %) 49], -

) ) ) ) ) ) ) )

LHC 3:91 5:61 2:41 6:61 4:49 1:38 4:49 2::82 4:16 5:11

(pb) 105 103(5:61 104(2:41 103(6:61 103(4:49 104(1:38 103(4:49 102(2:82 102(4:16 105 pb

103) 104) 103) 103) 104) 103) 102) 102)

1.1: : Rjj > 0:5, pt j et > 10 LHC.

j bb Tevatron LHC Tevatron Rjj(ej) > 0:5, ptj et > 20 j j bb
23 . .


j bb
, 1.3, 1.10,
x 10 Number of events 4500 4000 3500 3000 2500 2000 1500 1000 500 0 0 5 10 15 20
4

; . . , .

,

, o

PTj2 > 40

. .

5 ,

25 30 35 40 45 50 pT of the second jet [GeV]

. 1.10:

( (

P

j2 T

j j bb ) )
24

, Tevatron. , ,

-


b, . 1.11 Tevatron

.

, , , LHC. ,

-

1.12

PYTHIA.

p p

.
T T

;

mtop=3,

,

W jj tt
LHC

Tevatron . (-

p

1.12). . . . ,

s^ tt
. ,

W jj

-

pW : W T

t

,

W jj

jET (lepton)j;

, 300 . ,

tt

HT , HT = jET (jet1)j + jET (jet2)j + 150
.

bb

tt

, , .

, .

.

-

WZ
25


,
Cut 1: Rj j (ej ) > 0:5, pT Rjj(ej) > 0:5, pt j et > ( Cut 2: pt j etmax > 45 p ^ . Cut 3: s >180 Cut 4: pT W >30 . Cut 5: di-jet mass> 25 Cut 6: HT >100 for Cut 7: 3 n-jet 2. Cut 8: di-jet mass 40

,
j et > 10
20 . . Tevatron 260 . , ET > 15 / , pt e > 15 , ET > 20 / , pt e > 20

.

LHC WTevatron ). (1.13)

> HT > 100

LHC.

1.4,1.5. 1.11,1.12, (100f b?1) Tevatron (LHC) 50% : z, ,

,

bb
.
2

b 0.5%. {\ .
,

2f b?1

-

" (1.14) 70% . (1.15) :

W, m
,
2 W

= (Pe + P )2 = 80:12 z-

.

, \ "

ps
-

p

z

.

,

-

M

t

; 50

m2 = (Pe + P + Pb)2 t pz
. 26


" Tevatron (LHC),

1.13ab, 1.14ab, . 0.6 , 60% (40%) Tevatron 1

(a) 10 (18) LHC,

\(b). .

W tb
(Run II) ,

V

tb

, .

LHC 50]. , ,

10% LHC .

W tb Tevatron -

,

1.4

.

, PYTHIA.

,

. -

.

W tb

. Tevatron (Run I).

(

-

III, IV)

D0

27


Tevatron (pb) 1:23 102 2:55 100 |||{ 6:61 100 |||{ 6:52 100 |||{ 6:66 100 |||{ 8:70 102 |||{ 2:15 102 |||{ 1:44 102(4:20 101) 9:63 101|||{ 3:73 102(1:20 102) 9:63 101|||{ 3:73 102(1:20 102) 9:63 101|||{ 9:10 101 |||{ 4:20 101(1:44 102) |||{ (9:63 101) 6:40 101 9:38 10?1(9:38 10?1) 2:40 100(2:40 100) 2:35 100(2:35 100) 2:24 102(2:24 102) 2:40 100(2:40 100) 7:30 101(7:30 101) 5:10 101 4:23 101 |||{ 4:23 101 |||{ |||{ 4:23 101 |||{ 4:23 101 7:28 102(7:82 103) 7:82 103(7:28 102) 1:01 103(3:52 103) 7:61 102(7:61 102) 3:52 103(1:01 103) 7:61 102(7:61 102) 9:90 101 4:80 102 4:60 102 3:85 102 3:85 102 3:62 104 7:01 104 pb 28 1.2: j j bb : Rjj > 0:5, pt j et > 10 Tevatron LHC.

process uu ! uubb uu(uu) ! bbbb uu(uu) ! ssbb uu(uu) ! ccbb uu(uu) ! ddbb uu(uu) ! uubb uu(uu) ! ggbb ud(du) ! udbb us(su) ! usbb ud(du) ! udbb us(su) ! usbb du(ud) ! dubb su(us) ! usbb uu ! uubb ud(du) ! udbb us(su) ! usbb dd ! ddbb dd(dd) ! bbbb dd(dd) ! ssbb dd(dd) ! ccbb dd(dd) ! ddbb dd(dd) ! uubb dd(dd) ! ggbb dd ! ddbb ds(sd) ! dsbb ds(sd) ! dsbb ds(sd) ! dsbb ds(sd) ! dsbb gu(ug) ! gubb gu(ug) ! gubb gd(dg) ! gdbb gs(sg) ! gsbb gd(dg) ! gdbb gs(sg) ! gsbb g g ! b b bb gg ! ssbb gg ! ccbb gg ! ddbb gg ! uubb g g ! g g bb Total

LHC (pb) 1:17 103 1:06 100(1:06 100) 2:53 100(2:53 100) 2:53 100(2:53 100) 2:52 100(2:53 100) 3:38 102(3:38 102) 8:92 101(8:92 101) 7:40 102(7:40 102) 1:71 102(1:71 102) 3:74 102(3:74 102) 1:71 102(1:71 102) 1:78 102(1:78 102) |||{ |||{ |||{ |||{ |||{ |||{ |||{ |||{ 1:17 103 7:00 10?1(7:00 10?1) 1:70 100(1:70 100) 1:70 100(1:70 100) 2:05 102(2:05 102) 1:70 100(1:70 100) 5:86 101(5:86 101) |||{ 9:16 101(9:16 101) 9:16 101(9:16 101) 9:16 101(9:16 101) 9:16 101(9:16 101) 2:37 104(2:37 104) 4:53 103(4:53 103) 1:29 104(1:29 104) 2:43 103(2:43 103) 5:47 103(5:47 103) 2:43 103(2:43 103) 6:58 102 2:21 103 2:24 103 2:11 103 2:11 103 2:43 105 3:62 105 pb Tevatron LHC Rjj(ej) > 0:5, pt j et > 20


pj

2T exact j j bb split j j bb

] 10 15 20 40 nb] 70 32 14 1.2 nb] 64 22 8 0.25

1.3:

j j bb P
j2 T

Tevatron : Rjj > 0:5, PTj1 > 10

-

cuts Cut Cut Cut Cut Cut Cut Cut Cut

1 2 3 4 5 6 7 8

signal 1.986 1.514 1.493 1.295 1.286 1.249 1.247 1.216 1.4:

10 10 10 10 10 10 10 10

2 2 2 2 2 2 2 2

W bb 3.680 102 1.711 102 1.453 102 1.173 102 1.107 102 1.038 102 1.031 102 8.867 101 Signal:
Tevatron

W jj WZ 2 2.059 2.644 10 1.034 102 1.136 9.211 101 1.053 7.687 101 8.564 7.488 101 8.515 6.649 101 8.087 6.649 101 7.419 6.141 101 7.266 122, Background:

10 10 10 10 10 10 10 10 297;

1 1 1 0 0 0 0 0

j (j )bb 6.292 102 1.114 102 1.030 102 8.910 101 8.353 101 6.961 101 4.455 101 3.619 101 S/B' 0.41
-

tt 5.849 4.898 4.898 4.191 4.186 4.185 1.055 1.039

10 10 10 10 10 10 10 10

2 2 2 2 2 2 2 2

WH 8.428 6.491 6.278 5.145 5.124 5.013 4.562 4.490
-

10 10 10 10 10 10 10 10

0 0 0 0 0 0 0 0

, cuts Cut Cut Cut Cut Cut Cut Cut Cut 1 2 3 4 5 6 7 8 signal 1.212 8.792 8.764 7.423 7.401 5.643 5.370 5.296 1.5: , 10 10 10 10 10 10 10 10
6 5 5 5 5 5 5 5

.
4 4 4 4 4 4 4 4

W bb 8.236 5.143 4.871 3.826 3.771 3.649 3.610 3.177 Signal:
LHC

10 10 10 10 10 10 10 10 5:3

W jj WZ 5 1.912 1.724 10 1.058 105 1.177 1.015 105 1.138 7.758 104 9.048 7.735 104 9.013 7.524 104 7.545 7.408 104 6.122 7.019 104 6.030 105, Background:

10 10 10 10 10 10 10 10 5:3

4 4 4 3 3 3 3 3

j (j )bb 1.155 106 6.112 105 6.053 105 4.974 105 4.957 105 4.729 105 2.411 105 2.301 105 105 ; S/B=
-

tt 4.449 3.762 3.762 3.262 3.262 6.214 1.886 1.886 1.0

10 10 10 10 10 10 10 10

6 6 6 6 6 5 5 5

WH 6.124 4.923 4.854 3.976 3.972 3.334 2.740 2.694
-

10 10 10 10 10 10 10 10

3 3 3 3 3 3 3 3

. 29


Number of events

400 350 300 250 200 150 100 50 0 20 40 60 80 100 120 140 160 180 200

Number of events

225 200 175 150 125 100 75 50 25 0

pT jetmax [GeV] Number of events
400 350 300 250 200 150 100 100 50 0 50 100 150 200 250 300 350 400 0

150 200 250 300 400 450 500 550 600 350

s [GeV]

Number of events

500

400

300

200

50 100 150 200 250 300 350 400

HT [GeV]

di-jet mass [GeV]

. 1.11:

Tevatron. .

-

30


x 10

2

x 10

3

Number of events

7000 6000 5000 4000 3000 2000 1000 0 50
3

Number of events
100 150 200

1400 1200 1000 800 600 400 200 0 500 x 10 8000 7000 6000 5000 4000 3000
2

pT jetmax [GeV] Number of events
1200 1000 800 600 400 2000 200 0 200 400 600 800 1000 1000 0

s [GeV]

1000

1500

2000

Number of events

x 10

100

200

300

400

HT [GeV]

di-jet mass [GeV]

. 1.12: .

LHC.

-

31


Number of events

Number of events

(a)
250 200

50 45 40 35 30 25 20

(b)

150

100

15 10 5

50

0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400

top mass [GeV]

top mass [GeV]

. 1.13:

()

(b)

\

"

Tevatron. .
x 10
2

-

x 10

3

Number of events

1200 1000 800 600 400

(a)

Number of events

1400 1200 1000 800 600 400

(b)

200 0 100 200 300 400

200 0 100 200 300 400

top mass [GeV]

top mass [GeV]

. 1.14:

()

(b)

\

"

Tevatron. .

-

32


2

W tb
2.1

.
CDF D0 175 ? 53], : , 51] t, 177+7+16 GeV 52], ?7?19 ( ). . tt t"

v= 2 = 175 t\ ".

p

, ,

,\

Wt, , 33

t-

b-

.

,

,

,

.

-

W tb


. LHC.

54, 55]. , 26] NLO t-

W tb
Tevatron t-

e .

W tb W bb W bb + jet, .
,

W tb

56].

.
2.2

16].

26, 56, 57] ( 57] , ,

56]. (1.1) W tb . ,

).

58, 59] .

. ,

NLO -

pp ! bbW pp ! bbW + jet;
2.1 (2.1b) 2.2 34 (2.1a) ,

(2.1a) (2.1b) . -


u D u D

u

A

b B W+ B W+ b W+

u D u D

u

G

b B W+ W+ b B W+

u D

W+ u
diagr.3

B W+ b W+ b B W+

u D

W+ c
diagr.4

B W+ b W+ b B b B W+

diagr.1

diagr.2

W+ t
diagr.5

W+ A
diagr.6

u D

W+ H
diagr.7

u D

W+ Z
diagr.8

u D

d

A u

b B W+ c
diagr.13

u D b B

d

G u

b B W+ t
diagr.14

u D b B

u

d

Z

b B u D Z D b B

W+ u
diagr.12

diagr.9

diagr.10

diagr.11

u

D

W+

D

W+

diagr.15

W+

. 2.1:

u d ! bb W .

35


b uA uA u u B u G d D D W + diagr.2 diagr.1 G u u uW + W + D D Ab diagr.8 B u D u D G b B W+ diagr.15 W+ B tG t W+ diagr.22 b W+ W+ Zb bB diagr.29 G W+ dA b bB diagr.36 G W+ dG b bB diagr.43 G uZ u u D u D

u D

u D u D u D

u D

u D

b B uA uA B bb b u u W+ G D D W + diagr.4 G diagr.3 G G u u uW + W + uW + W + u D Hb Zb d DA B B diagr.9 diagr.10 diagr.11 b b G uG uG u u B B G u u W+ G d D D W + diagr.17 G diagr.16 diagr.18 u W+ W+ u W+ B W+ t W+ D A B D A bb bb b G G diagr.23 diagr.24 diagr.25 W+ B W+ W+ u W+ u t W+ Ab H d d d b B D D diagr.30 G diagr.31 G diagr.32 W+ W+ u u d G d G d dA b dG b d D DZ diagr.37 B diagr.38 B diagr.39 W+ W+ u u dZ B dZ b dZ D bb bB d D G G diagr.44 diagr.45 diagr.46 uZ u d D

b G G G u u u uA b uG b uW + B B D u u t W+ G B B D D W + diagr.5 W + diagr.6 W + diagr.7 b u G G G G u u u u u W+ W+ W+ b W+ B b d b d b t DG DZ B B B D diagr.14 W + diagr.12 diagr.13 G b B W W b B G W b B G W G b B W b B G B uG bb u G D W diagr.19 u W+ W DHB bb diagr.26 G W u W+ Zb d B D diagr.33 G W u dG b B d D diagr.40 G B uZ bb u G D W diagr.47 b uG bB u G D W diagr.20 u W+ W DHb bB diagr.27 G W u dA b d B D diagr.34 G W u dG G D Gb diagr.41 B W u Wt+ b D bB diagr.21 G u W+ W DZB bb diagr.28 G W u B d DA bb diagr.35 G W u dG B D bb diagr.42 G
+

+ +

+ +

+ +

+

+

+

+

+

+

+

+

+

+

b B W+ diagr.50 G

b uZ uZ u bB u u G D D + W + diagr.49 diagr.48

b B G W+

. 2.2:

u d ! g bb W .

36


ud ! bbW + jet. , ,
, , 80 120 . , 61]. 62]. (2.1a) NLO , (Mt =2) . , a posteriori NLO
2 2

. .

, . , CompHEP 33], CTEQ4M 63]. Mt . , , 56]. LO , , . , -

, . , . , , , 56].

,

W-

Q

. , 56]

b-tag b.
2.3

-

W tb
W tb
CP , 65]). . 37 , 64], (-


,

,V? 54]. ,

, 65]

V

tb

66]. CLEO 67] ,

,

V +A b!s

-

e

(2.1).

54], 68]:

(1 5)=2. CbW

1 g L = p W ?b P?t ? 2M W ? b (F2LP? + F2R P+)t + h. c.; (2.2) 2 W W = D W ? D W , D = @ ? ieA , = i=2 ; ] P =

F2L and F

R 2

C

tW

F2L(R)
CompHEP.
2.4

=

C

t(b)W 2

p

(

2vM g

W

(2.3) 54])
, -

, , , . , 38 . , . , . .

. -


, -

, . LHC. .

-

SB=S 6= ;, . .
-

B
. , , , . . ,

IV

22], 24], 21].
Wb

,

{

M M
bb

Wb

= Mt .

M

, 0, M , tZ

,

t,
tu!bb = , ,P .
W T

t

d!W

t

d

W ub!bb = t

V
. ,

ub

bb

s, t-

MH .

u!W

P

T

bb

,

, ,

4.10. , -

M
(2.1b)).

bb bb T

P PTW (
, P

W t

(2.1a). ,

Mbb, P
, , .

2.2

b T

P

q T

. , 39 . , e

,

-


s, ^

.

2.5

-

2.3, 2.4, 2.5, 2.6

(2.1)

R PTj > 10 GeV; PTj > 20 GeV;

j j (ej )

P,
j T

j j j < 2:5; j j j < 3;
PT ,

R R
.

j j (ej ) j j (ej )

> 0:5 > 0:5 b
1

Tevatron LHC

(2.4a) (2.4b)

.

, ,

-

.

,

.

b

2

b,

(2.2),

PT ,
: . GeV; GeV GeV; GeV

.

, ,

-

. Tevatron LHC, (2.1a)

PTb1 > 30 GeV; PTb2 >20 Mbb >100 GeV; PTbb; PTW >30 PTb1 > 50 GeV; PTb2 > 20 Mbb >100 GeV; PTbb; PTW >100
40

) )

Tevatron LHC

(2.5a) (2.5b)


Single Top (x10) and complete Wbb process (s = 2000 GeV)

-

d/dMbb, [pb/GeV]

d/ds, [pb/GeV]

0.08 0.06 0.04 0.02 0

0.15 0.1 0.05 0 0 100 200

-

100

150

200

250

Mbb d/dPTb1, [pb/GeV]
0.4 0.3 0.2 0.1 0 0 50 100

s

-

d/dPTb2, [pb/GeV]

0.4 0.3 0.2 0.1 0 0 50 100

PTb1
0.2 0.15 0.1 0.05 0 0 50 100 150

PTb2 d/dPTbb, [pb/GeV]
0.2 0.15 0.1 0.05 0 0 50 100 150

d/dPTW, [pb/GeV]

PTW

PTbb

. 2.3: (2.4a).

pp ! bbW

Tevatron

-

41


d/dMbb, [pb/GeV]

0.3 0.2 0.1 0 0 100 200

d/dPTW, [pb/GeV]

Single Top (x5) and complete Wbb process (s = 14 TeV) 0.3

-

0.2

0.1

0 0 100 200

Mbb d/dPTb1, [pb/GeV] d/ds, [pb/GeV]
0.6 0.1 0.075 0.05 0.025 0 100

PTW

0.4

-

0.2

0 200 300 400 500

s d/dPTbb, [pb/GeV]
0.3

-

0

50

100

150

PTb1

d/dPTb2, [pb/GeV]

0.6 0.4 0.2 0 0 50 100 150

0.2

0.1

0 0 50 100 150

PTb2

PTbb

. 2.4: (2.4b).

pp ! bbW

LHC

-

42


Single Top(x3) and complete Wbbj process (s = 2000 GeV)

-

d/dMbb, [pb/GeV]

0.08 0.06 0.04 0.02 0 0 100 200

d/dPTbb, [pb/GeV]

0.08 0.06 0.04 0.02 0 0 100 200

Mbb
0.02 0.015 0.01 0.005 0 100

PTbb d/dPTb1,[pb/GeV]

d/ds, [pb/GeV]

0.15 0.1 0.05 0

-

200

300

400

500

s d/dPTd,[pb/GeV]

-

0

50

100

PTb1

d/dPTW,[pb/GeV]

0.1

0.2

0.05

0.1

0 0 50 100

0 0 50 100

PTW

PTd

. 2.5: (2.4a).

pp ! j bbW

Tevatron

-

43


Single Top and complete Wbbj process (s = 14 TeV)

-

d/dMbb, [pb/GeV]

d/dPTW, [pb/GeV]
0 100 200

0.4 0.3 0.2 0.1 0 0 100 200

0.4

0.2

0

Mbb d/dPTb1, [pb/GeV] d/ds, [pb/GeV]
0.8 0.6 0.4 0.2 0 200 300 400 500

PTW

0.1

-

0.05

0 100

s d/dPTbb, [pb/GeV]
0.4 0.3 0.2 0.1 0

-

0

50

100

150

PTb1

d/dPTb2, [pb/GeV]

1

0.75 0.5

0.25 0 0 50 100 150

0

50

100

150

PTb2

PTbb

. 2.6: (2.4b).

pp ! j bbW

LHC

-

44


ud ! W +bb / ud ! W ?bb ug ! dW +bb / ug ! dW ?bb ud ! gW +bb / ud ! gW ?bb gd ! uW +bb / gd ! uW ?bb
2.1:

Tevatron ; pb .. . (2.4a) (2.5a) 8.1 0.68 0.57 0.30 .. . (2.4a) (2.5c) 1.4 0.32 0.42 0.27 .. . (2.4a) (2.5c) 2.5 0.34 0.38 0.13 .. . (2.4a) (2.5c) 0.41 0.08 0.12 0.07 , . (

. . . .

(

LHC. . .),

.

LHC ; pb .. .. (2.4b) (2.5b) 16.6 / 10.4 3.8 / 2.4 3.2 / 1.8 1.7 / 0.9 .. .. (2.4b) (2.5d) 28.4 / 5.8 9.6 / 1.8 18.0 / 2.0 7.8 / 1.5 .. .. (2.4b) (2.5d) 4.6 / 1.4 2.6 / 0.8 1.4 / 0.7 0.8 / 0.4 .. .. (2.4b) (2.5d) 6.0 / 15.2 1.7 / 4.0 4.0 / 9.0 1.6 / 3.6 Tevatron .)

(2.1b)

PTb1 >40 GeV; PTb2 ; PTj >20 Mbb >40 GeV; PTbb >30 PTb1 > 50 GeV; PTb2 ; PTj > 20 Mbb >100 GeV; PTbb >100
LHC. , (2.1a) (2.1b) ,

GeV; GeV; PTW >20 GeV GeV; GeV; PTW >30 GeV

) )

Tevatron(2.5c) LHC (2.5d) -

pp-

ppTevatron.

, , 45

. LHC, \

2.1 ", -

-


F2L F2R 10% ?0:18 : : : +0:55 ?0:24 : : : +0:25 0% ?0:07 : : : +0:11 ?0:18 : : : +0:21
Tevatron 2.2: . . 2.7 Tevatron . . 50% LHC LLH C = 100 fb?1 . , 2.8 Tevatron , 2.8 (2.5) , , 2.7 , 10% (26]). 2.7. LHC , LHC Tevatron. 2.9 , LHC. 46 ( , (2.1) LHC. , . (2.5). -

-

W-

b, Tevatron LT = 2fb?1 ,
. , . .) -

(2.1), , -

, , -

Tevatron.

LHC,

.

(2.5b,2.5d). ,

M W , Mt ,


Cross section

Cross section

2 1.8 1.6 1.4

Complete process with anomalous couplings, s =2000 GeV

-

2.2 2 1.8 1.6

1.2 1.4 1 1.2 0.8 1 0.6 0.8 -0.2 0 0.2 0.4 0.6 Fl2, FR2 -0.5 -0.25 0 0.25 0.5 Fl2, FR2

0.6 FL2 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 FR2 0.4

. 2.7:

(2.5a,2.5c) Tevatron.

-

47


Cross section

14 13 12 11

Cross section

15

Complete process with anomalous couplings, s =14 TeV

-

52 50 48 46 44

10 9 8 7 6 -0.2 0 0.2 0.4 Fl2, FR2 42 40 38 36 -0.2 -0.1 0 0.1 0.2 0.3 Fl2, FR2

0.03 FL2 0.025 0.02 0.015 0.01 0.005 0 -0.005 -0.01 -0.015 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 FR2

. 2.8:

(2.5b,2.5d) LHC.

-

48


A

0.38 0.36 0.34 0.32 0.3 0.28 0.26 0.24 -0.4 -0.2 0 0.2 0.4 Fl2, FR2

A

0.4

Asymmetry with anomalous couplings, s =14 TeV

-

0.5

0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 -0.4 -0.2 0 0.2 0.4 Fl2, FR2

FR2

0.1

0.075 0.05 0.025 0 -0.025 -0.05 -0.075 -0.1 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 FL2 0.1

. 2.9: LHC.

(2.5b,2.5d)

-

-

-

49


Combined limit with statistical and different value of sistematical uncertainty,

0.3 FL2 0.2 0.1 0 -0.1 -0.2 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 FR2

FL2

0.125 0.1 0.075 0.05

0.025 0 -0.025 -0.05 -0.075 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 FR2

. 2.10:

LHC.

50


10% 5% 1% 0% 2.3: .

?0:094 ?0:052 ?0:013 ?0:003

F2L ::: ::: ::: :::

+0 +0 +0 +0

:34 :097 :014 :003

?0:17 ?0:12 ?0:05 ?0:022

F : : : :
.

R 2

: : : :

: : : :

+0 +0 +0 +0

:18 :13 :06 :03
LHC

F2L Tevatron ( sys. 10%) ?0:18 : : : LHC ( sys. 5%) ?0:052 : : : e (pse+e? = 0:5TeV) ?0:1 : : : e (pse+e? = 2:0TeV) ?0:008 : : :
2.4: . . 2.3 . ,

F2R +0:55 ?0:24 : : : +0:097 ?0:12 : : : +0:1 ?0:1 : : : +0:035 ?0:016 : : :

+0 +0 +0 +0

:25 :13 :1 :016
-

2.10 1% 5% Tevatron LHC, F2L F . LHC , Tevatron.

R 2

, ,

. 10%

2.2 -

e+e?
55]. LC 500 10%).

(LC),

Tevatron LHC

Tevatron 2-5 ( , , LC , , W tb . 500 LC ( 1%), 51

e2.4.

,

54,

-


. , LHC . ( .
2.6

, LC 3-8 ) 58, 59]. , , ,

5% Tevatron,

-

.

, . (2.1b), (2.1a) , , LHC LHC . ; , , , . . . ,

-

W tb
, , .

, -

Tevatron (Run II) e W tb , ,

-

52


3 D Tevatron (Run I).
3.1

. . T vatron ( , ). D D , . .

I, . , ). . , .

(

) 18](200

,

), 20](100

b53

-


. (1992-1996 . .) D

,

b, st.

. . . ,

, Run I Tevatron. -

D

W ! l; .
,

,

,

btt), tt t( D , QCD), (W j j ). HERWIG 35],

. ( -

WD. -

. . , 18],

E

T

j

det

j > 1:5.

(0:0160 0:0016)% , D . , D 54

j

det

,

ET < 15 6 j < 1:1 (0:0622 0:0048)% . -

,

3.1. 18].

W jj (tag-rate functions),
-


Probability (Jet fakes an electron) â 104

5 4 3 2 1 0 20 16 12 8 4 0 10 20 30 40 50 60 70 80 90 CC fit = (0.0160±0.0016)%

·

· · · · ·

EC fit = (0.0622±0.0048)%

·

· · · · ·

Electron Transverse Energy ET [GeV]

. 3.1: (CC)

E

T

. ( ,

, (EC). ) E
T

-

. . ( , . . ( ),

-

W! ; ) 0:688 0:034,
,

tt, QC D

3.2

D

,

69]

TRD

. , 55

, ,

: 3.2. ,

.


{ . "GM Ntuple-Maker" :

.

, 18].

-

D CW ntuple; "Analysis Package" , "COUNT Package" "CLIMIT" ( ,

(CAFIX), ,

, CW ntuple. , , -

. , )

.

-

3.2.1
91:9 4:1 pb?1,

ET . 6

,

(

) ,

Run I

,

, .

90-93%
?1

96-99% .

.

88:0 3:9 pb ; , . . , . ,

-

. , 60% . a

-

R = 0:5 18]
56


Data µDSTs

MC µDSTs

RECO, MUSMEAR

GEANT, TRIGSIM

CompHEP, PYTHIA, HERWIG

DüDAD

GM

Ntuple-Maker
CAFIX

GM Ntuples
TAGRATE ANALYSIS Correction Factors

Package Output Summary

TRIG

Output Ntuples

Correction Factors FAKE_EL COUNT FAKE_MU RGS MPLfit / RGS Spreadsheets

Packages

Count Summary

Mini Ntuples

Matrices

ERRORMATRIX

SPLIT, CLIMIT

Limits

. 3.2:

.

,

-

57


R( ; j et) 0:5 PT > 20 W. ,

j j < 1:7.
,

ET > 5
,

. , R( ; j et) < 0:5

,

;

b,

PT > 4 b .

, . NLO 66 s. , 1.1. . 3.1

, ET > 15 6

44%. W, -

t-

153 t, 15 s. , 3.2

35 t-

. ,

W jj

-

W bb, W cc ( CompHEP 33] W W; W Z
,

,W cs; W ss), W j j (j = u; d; g) 34]. . . , , , . -

116

e+jets/

110 1-

+jets/ . 0.2-0.3%

,

6-11%.

, . 58


N 1 2 3 4 5 . ET . ET .j j .j j 1 2 1 2

ET (jet1) ET (jet2) j det(jet1)j j det(jet2)j

>5 >5 < 4:0 < 4:0 > 20 < 1:1; 1:5{2.5 > 20 < 1:7 >4 < 1:7 PT .

QCD QCD, W j j QCD, W j j QCD QCD , QCD , QCD , QCD .

6 ID 7 . ET 8 jj 9 ID 10 .p 11 j j 12 ID 13 .p 14 j j
T

j det(e)j
pT ( ) j det ( )j pT ( ) j det ( )j

ET (e)

T

3.1:

. ID (jet1)

{

59


% MK tb MK tqb MK tt MK W MK W MK W MK W MK W QCD 3.2: . .

-.

-. 8:2% 5:9% 13:5% 4:7% 1:2% 0:1% 1:1% 2:2% 0:4% 0:01% ,

%

-.

-. 3:5% 2:7% 5:6% 2:2% 0:5% 0:1% 0:4% 0:7% 0:1% 0:01% , -

59% 62% 71% 50% 55% 51% 62% 61% 79% 1% ,%

24% 27% 28% 24% 29% 26% 20% 20% 2:7% 0:3%

bb cc jj W Z

b-

60


3.2.2
. : . , ; ("bad jet"); ) pT (isol ) < 500 , (20= (20= (20= (240= ) ) ) ) (e; ET ) ? ET < 0:0 6 6 (jeti ; ET ) ?ET < 0, 6 6 i = 1,2,3,4 (jeti ; ET )+ET > 20, 6 6 i = 1,2,3,4 (isol ; ET ) ? ET < 190 6 6 ; (isol ; tag ), 3.3. 3.4 110 . . ; , 21 61 3.3 , , . , . 116 ,8 ). (pT (isol ) < 250 : , , Z; tt; W W; W Z (PT (tag ) > 500 ET < 250 6 ; -

,


tb

tqb

keep

keep

QCD

(isol µ, tag µ)



(isol µ, tag µ)

Signal Data

keep

keep



(isol µ, tag µ)



(isol µ, tag µ)

. 3.3: .

. .

, { -

62


N 1 2 3 4 .

e

"bad jets" 1 2 1 2 " . . . .

5 . ET 6 . ET 7 .j j 8 .j j 9 . 10 . 11 . ET 6 12 " . ET 6 13 14 15 . . 3.3:

ne nisol n EM F (ET ) CH F (ET ) RHotcell ET (jet1) ET (jet2) j det (jet1)j j det (jet2)j njets njets ET , ET 6 cal 6 pT (tag ) pT (isol ), ET 6 pT (isol ) (isol ; tag )

= 1 or = 0 tt , W Z , W W = 0 or = 1 tt, , W Z, W W =0 tt , W Z , W W < 0:9 > ?0:05, < 0:5 < 10 > 15 W j j , QCD > 10 W j j , QCD < 3:0 W j j , QCD < 4:0 W j j , QCD 2 W jj, W W , W Z 4 tt; QCD, W W , W Z QCD, W +jets > 15

< 500 < 250 < 500 < 2:4 rad

QCD

63


MK tb MK tqb MK tt MK W MK W MK W MK W MK W QCD 3.4: ,

87% 83% 46% 79% 79% 72% 69% 77% 10% 18% .

50% 53% 28% 42% 41% 32% 44% 41% 11% 7%

bb cc jj W Z

3.2.3
. . , 3.5 3.5 , 3.4 3.8% , .

5 . , . -

tt
4.2% ,
3.3

. .

, 12

{ 64

-


10

2

Keep

Reject

No. of Events

10 1 10 10 10
-1 -2 -3

Dü Data Background tt tqb tb

5

47

89

131

173

215

ET (jet3) + 5 â ET (jet4) [GeV]
tt
. 3.4: .

N 1 2 3 1 2
j12 HT e0 j34 HT j1(4 HT

)

ET (jet1) + ET (jet2) + ET (e) + ET > 125 6 ET (jet3) + 5 ET (jet4) < 47 ET (jet1) + 4 ET > 155 6 ET (j1) + ET (j2) + ET (j3) + ET (j4) > 70 ET (jet3) + 5 ET (jet4) < 47
. 65 -

W jj tt QCD W jj tt

j1234 HT 0 j34 HT

3.5:


Dü Preliminary 10 Electron Channel No. of Events 6 4 2 0 70 120 170 220 270 320 370 Mtop (e,,jet) [GeV] No. of Events 8
Data Signals + Backgds Total Background W+jets Multijets tt pairs tb + tqb

Dü Preliminary 5 Muon Channel 4 3 2 1 0 70 120 170 220 270 320 370 Mtop (µ,,jet) [GeV]
Data Signals + Backgds Total Background W+jets bb pairs tt pairs tb + tqb

. 3.5: , , ,

-

.

t.
. . , . ,

-

3.3.1
, ,

{

.

3.6 . , :

-

tt.
, .

, , 66

b,

.

-


.

, ,

, , . , , .

-

QCD

W j j QCD .

:

, , ;

(JET 3 MON) (ELE JET HIGH); W jj , ; .

W jj

tt QCD

3.3.2
, . 95% .
sig

:

sigdat Ypredict = A sigdat Ypredict AsigMC

sigMC

L

sig

+Y

backMC

+Y

backdat

= A0

+ B1 + B2 ;

L

, , 67

;

; ;

sig


.

. .

4:41% 2:2% { 32% 29%

| | |

b
. ID ID ID . . "Bad jets" J3M/EJH Tag/notag

0:2% { 70% 4:6% 5% { 7% 0:9% { 100% 4:9% { 7:4% 1:2% { 10% 1:2% { 5:3% 0:1% 5:0% 0:7% { 3:7% 2:9% { 3:6% 7:7% { 9:9% 18% 10.6% 1:7% 1:1% { 4:1% .

p (tag) p p p(e) p( ) p (tag) p
| | | | | | | |

p

p (W +jets) p (tt) p (tag) p p p(e) p( ) p (tag) p
| | | | | | | |

p

W j j QCD
| | | | | | | | | | p| ) ( | p | | p | | | | | | | | | | | |

p

mis-ID mis-ID . Tag rate funcs. shape Tag rate funcs. scale W jj 3.6:

p p

p|e) ( p( )
| | |

p(e)

68


Y Y

backMC backdat

;

= B1 = B2 ; :

, ,

A0 = A Y

sigMC

L.

sigdat obs

PY Y a
sigdat obs

sigdat obs

j ; a0 ; b1; b2 =

exp

sigdat ?Ypredict

Y

sigdat sigdat Yobs Ypredict sigdat obs !

;

0

b1 b2

; .

,

,

;

Y

sigdat obs

; -

tt, W j j QCD,

-

: Prior ( ; a0 ; b1; b2jA0; B 1; B 2) = Prior ( ) Prior (a0 ; b1; b2) 1 = d Gaussian ? 2 cT ?1 c dc; C

0 c=@
C

a0 b1 b2

1 A;

0 A0 1 C = @ B1 A ;
B2

c=c?C
-

. 69


: Post ; a ; b1; b2jY
0
sigdat obs

=

PY

sigdat obs

j ; A0 ; B 1; B 2 Prior ( ) Prior (a0 ; b1; b2)

RRR R

Post jY

sigdat obs

=

ZZZ
a0 b1 b2

a0, b1, and b2

a0 b1 b2

;

:
sigdat obs

Post ; A0; B 1; B 2jY :
sigdat obs

:

Z
0

95

Post jY

= 0:95 95% , (tb), t. . . -

s-

.

= A0 dA01 dA02 = B 1 dB 1
1

dB 1

2

= B 2 dB 2

1

A0 = A

tb

L = 0:002550 91:90 = 0:23434724
tqb

B 1 = Y tt + Y B2 = Y
) , (\ "
Wj

= 1:1354 + 0:2771 = 1:41254222 = 5:6230 + 5:9239 = 11:49532223 ( 6 6, . ). 70 ,

+Y

QCD

(

, ):


tb dA01 = Astat ; dA02 = "trig "tag 1ID tt dB 11 = Ystat dB 12 = "trig "tag 1ID W dB 21 = Ystatj "cosmic

"

tag B "tag 2ID tqb Ystat "tag B "tag 2ID QCD Ystat F Wj

"

MCfrag "badjet

"
;

JES

L; L;

"

eID

tqb tt "MCfrag "badjet

"

JES

"

eID

Ptag Pfake

e

Ftag R QCDe ; Rtrig

Wj trig

(tb ! e+jets/ ):
C

=

0 dA02 + dA02 dA0 dB1 0 @ dA21 dB122 dB122 + dB122 1 2
0 0

0 0 dB 2

2 1

1 0 0:00040971 0:00354346 0:00000000 1 A = @ 0:00354346 0:11464828 0:00000000 A
0:00000000 0:00000000 1:26364791

=A :

MC

=

max B MC nzone MC Ninitial i=1

0 MC 1 X @Ncutsetzn(i) MC A X Cevent(j)
j =1

:

;

zone(i)

C

MC

C MC
; ,

MC

MC = "trig "

?

lepID "tag ID zone "badjet

"MC; "lepID; "tag ID ; "badjet trig B N i n j
MC MC initial

{ , (

(

tb),
, ),

( ; ;

M C;

M C;
, 71 ); ,

max zone

,


N

MC zn cutset

. .

,

v max MC unX 0Ncutsetzn(i) B MC u zone @ X C MC u event MC t N
initial

=A
(j ) 2

MC stat

=

i=1

j =1

1?
=

MC Ncutsetzn(i) MC Ninitial

!1 A
zone(i)

31=2 2 2 MC zn( 2 MC PNcutset Pnmax PNcutset i) zone + ( "trig )evt(j ) +7 j =1 j =1 ( "tag B )evt(j ) 6 i=1 7 6 zn(i) 7 6 2 2 MC MC PNcutset PNcutset 7 6 ( "JES )evt(j ) + ( "MCfrag )evt(j ) + 7 6 j =1 j =1 7 6 2 MC zn( 7 6 Pnmax PNcutset i) zone 7 6 ( "lepID )evt(j ) + 7 6 j =1 i=1 7 6 zn(i) 6 2 MC zn( 27 MC max PNcutset 5 4 Pnzone PNcutset i) + ( "tag ID )evt(j ) i=1 j =1 j =1 ( "badjet )evt(j ) zn(i)

=A

MC syst

" " "

tag B MCfrag JES

B
. 18]. ,

; ;

-

). , , 72 . 3.8 -

3.7

, (-

-

.

-


tb tqb tb tqb W jj QCD tt
3.7: ) ,

(0:255 0:022)% (0:168 0:015)% 0:18 0:28 5:59 5:92 1:14 12:65 12 0:03 0:05 0:64 0:58 0:35 0:93 (

(0:112 0:011)% (0:083 0:008)% 0:08 0:13 1:12 0:40 0:45 1:97 0:01 0:03 0:17 0:09 0:14 0:24 -

5 .

,

.

(95% CL) st-

tb tqb tb+tqb
3.8: -

38:4 53:5 48:4

108:3 131:0 124:1

44:9 60:9 56:2

37:0 56:4 49:2

89:4 120:2 109:6 .

39:2 58:0 51:5

95%

.

73


3.4

17]. , (pp ! tb + X ) < 39 pb ( (pp ! tqb + X ) < 58 pb ( , , , . . . NLO 95% C.L.
tb S M = 0:73 tqb S M = 1:70

-

,

0:04 pb) 0:19 pb) , -

b.

, ,

74


4

D Tevatron.
, 500 . , . , , . -

b10% . , ).

b
, . , , ,

(

b
. 75 .

-


4.1

. 71], 72]. , . ;o .

. , , ,

70] . " ". , 1957 . . . n
2n+1

13.

F (x1; x2 ; :::; xn)

1957 . . . :

F (x1 ; x2; :::; xn) = g
j

n XX j =1

gj (

i=1

hij (xi)); F. hij ,

(4.1) , . -

h

ij

, .

,

h

ij

n
2n + 1 (wij ).

.

g
, ,

j

. ,

hij ,
; 73]. . F. , , -

h

ij

g

j

76


, . 1989 . , , ,

. .

-

, , ,

,

,
i

F (x1 ; x2; :::; xn)
.

74]. , ">0 .

i

,

k,
(
n X j =1

wij , wij xj + i ) + )

f (x1 ; x2; :::; xn) = ( "

k X i=1

i

(4.2) , (4.3) "feed-forward" -

,

:

F (x1; x2 ; :::; xn) , {

(x) = 1 +1 ?2x : e 4.1. , , 4.1,

(k). 1986 . propagation).

, , ,

75] (error back. , "feed-forward" ( ) -

.

. . . 77


Output

Inputs

. 4.1: :

"feed-forward"
n X j =1

.

yi = (
(yi), . , . , .. ,

wij xj + i );
,j (xj ) ( ( ( ( ) , ,

(4.4)

i
),

, ,

i

,

;

. )-

). . , : . ( , . 78 ,

.

),

-

(PT ; ; s;...). ^ -


, . . , . ") , , . ,

, , , ,

.

-

-

. ( . ; " , , ,

-

(

,

)

,

.
2

, :
N X i=1

= 21 N

(fi ? ti )2; .

(4.5) ,t
i

fi ,N

(4.2) (4.2). (4.5). ;

i-

w
MLP t 76], :" .

( , ). . ) -

" 77] ( "Hybrid Linear-BFGS" 78], . 79

-


.

-

4.1.1
, , , (4.5) , . . , , , , , , . , ^i;f = (pf ? pi )2 t ( ), pi { , , s. . , , . ,

. 85], 21], 22]. , . = (pf 1 + pf 2 ) , . s2

M pf {

2 f 1;f 2

t. ,

-

Mt2 = (pb + pW )2 ! mt2 ,
4.1.1, 4.1.1 , 80

W j j QCD

.

:


u uug d 2.1 gu g W+d u u 2.2 gdgd g d d W+ W + 2.3 u d

gu u g uu u ud g g d 3.2 3.1 g u u u gu g d d 3.3

g u g d

. 4.2: .

W jj

-

. 4.3: .

QCD

-

Mg21;g2 = (pg1 + pg2 )2 ! ^ tq;(g1g2) = (pg1 + pg2 ? pq )2 ^ tq;g1 = (pg1 ? pq )2 ! ^ tq;g2 = (pg2 ? pq )2 !
, . : , , t.

! 0;
0; 0:

0;

(4.6) (4.7) (4.8) (4.9) -

p

^ ti;f = (pf ? pi)2 = ? seYtot PTf e ^

p

?jyf j

;
,Y

(4.10)
tot

s^
.

,P

f T

y

f

-

W jj

: Set1 : Mj1;j2; Mt ; Ytot ; PTj1; yj1; p PTj2; yj2; PTj12 ; yj12; ^; s (4.11)

P

T j 12

y

j 12

.

4.4. 81


Single Top (tb) and Background

0.15 0.1 0.05 0 50 0.1 0.075 0.05 0.025 0 100 200 300 400 500 s_hat 100 150 pTj1

0.1 0.075 0.05 0.025 0 0 50 100 150 pTj12


0 0.1 0.2 0.3 0.4 0.5 Mtop

0.165

2

0.16

0.155

0.15

0.1 0.05
0.145

0
0.14

0.1 0.05 0 0 50 100 150 200 M
j12 T

0.1
0.135

0.05 0 0 50 100 150 PTj12
0.13 0 10 20 30 40 50 60 Ncycle (training time)

. 4.4: ; 4{ { { QCD.

,

-

. 4.5: .

( 2)

. { W jj,

tb,
. ,

W jj.

, , -

4.5.

. , .

(4.5) , (Hall =

S et2 HT all =

P

4 ET f ).

S et3

PE f

Mt .

Set2 : PT j1; PTj2; Hall; HTall; Set3 : PTj1; PT j2; Hall; HTall; Mt;

(4.12) (4.13)

S et2 HT all (
.

4.5

S et3;

, .

, 4.5 82 ,

,

S et4),

S et1, S et1 Hall ,


, ,

, . . . , ; . , , ,

, , -

bW jj
, .

P

T

.

P

( T

:)

4.5 (S et5).

S et1.

4.1.2
. ( ; ( . . , ( 4.6, QCD . 83 ) . , . ) s). {

, , over ting. , (4.5)

: , -

:


The NN training error for the training and testing samples (QCD)



0.05

2

0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01

0

25

50

75 100 125 150 175 200 225 250 Ncycle (training cycle)

. 4.6: ()
2

(over ting) .

. ,

tb QCD
. , "over ting"
4.2

.

D . . -

,,

,

,

. . , , , . .

, -

b
84


:

e + ET + 6 e + ET + 6 + ET + 6 + ET + 6
20].

= =
100

(4.14) (4.15) (4.16) (4.17) .

4.2.1
. , . ,

-

W jj

. CompHEP : W bb, W cc ( ), W j j (j = u; d; g); Pythia W W , W Z. . , ,

s -

: mt = 174:3 5:1 CDF .
expt

D

(pp ! tt + X ) = 5:51 1:55 pb b .

, CTEQ5M1

-

st.

NLO NLO

79], 80]: (pp ! tb + X ) = 0:754 0:121 pb (pp ! tqb + X ) = 1:466 0:220 pb. . 85 -


20]. , . 20].

,

4.2.2
, ( , , , , , pp: (isol ; tag ) . -

).

(isol ; tag ); IP3d (isol ) { IP3d (tag pT (isol pT (tag zvert (isol zvert (tag . , ){ ){ ){ ){ z){ , , .

; ; ; ; ; . , , 7

,

-

.

{ 86

(tb3:4%, tqb5:3%, tt 44:4%, W bb


8:7%, W cc 8:3%, W j j 19:6%, W W 8:6%, W Z 1:7%). , (isol ; tag ) > 2:4 . ( , ). 4.7, ( ) ). ( ,

{ , (

)

, . , QCD . ,

-

, 0.85 NN ; 38% 66% t84% .

,
cosmic

-

> 0:85
63% s16% . , 60% 68% t. : 60% s, 67%; ,

,

26% QCD

, 54% QCD .

4.2.3
3.3. , NLO , . 87 ; . , , , , , ,

-

P

T

-


60 50 40 30 20 10 0 -0.4 -0.2 0

(a)

No. of Events in 88 pb / 0.1 bin

No. of Events / 0.1 bin

70

0.2

0.4

0.6

0.8

1 1.2 1.4 NNcosmic Output

10 9 8 7 6 5 4 3 2 1 0

(b)

-1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.2 1.4 NNcosmic Output

. 4.7: . (a): ( ). 3.3, 4.1, 4.2, 4.3, 4.4, , .. , . , . )

, (

;

(

); (b):

-

-

, ,

,

, . ,

4.8 . , , . ,

4.8 4.8 -

4.8 . ,

.

, , .

, 88

-


1/N dN/dNNout

. 4.8:

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 NN output

1/N dN/dNNout
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 NN output

( ( . ,

){

){

.

,

3.3,

,

4.1, 4.2, 4.3, 4.4.

N 1 2 3 4 5 6 7 8

Min. Min. Min. Max. Max. Max. Max. Min.

E E E

T T T

1 2 3 . . .

E 6

T

ET (jet1) ET (jet2) ET (jet3) 1 j det (jet1)j 2 j det (jet2)j 3 j det (jet3)j njets cal , E ET 6 T > 6 >

> 20 W j j , QCD > 15 > 15 < 2:5 W j j , QCD < 3:0 < 3:0 3 tt; QCD 20 (e CC) QCD, W j j 25 (e EC)

.

4.1: 3.1, 89 , 4.5. -


N 1 2 3 4 5 6 7 8

Min. Min. Min. Max. Max. Max. Max. Min.

E E E

T T T

1 2 3 . . .

E 6

T

ET (jet1) ET (jet2) ET (jet3) 1 j det (jet1)j 2 j det (jet2)j 3 j det (jet3)j njets cal , E 6 ET 6 T > >

> 15 W j j , QCD > 10 > 10 < 2:5 W j j , QCD < 3:0 < 3:0 3 tt; QCD 15 (e CC) QCD, W j j 20 (e EC)

.

4.2:

N 1 2 3 4 5 6 7

Min. Min. Min. Min. Max. Max. Min. .

E E E E E 6

T T T T

1 2 3 4 .

1j

E E E E

T

njets ET , E 6 cal 6

T (jet1) T (jet2) T (jet3) T (jet4) det (jet1)j T

> > > >

25 15 15 15 < 3:0 4 > 15

W j j , QCD W j j , QCD tt; QCD QCD, W j j

4.3:

90


N 1 2 3 4 5 6

Min. ET Min. ET Max. Max. Min. ET 6 Seven-variable . 4.4:

ET (jet1) > 15 ET (jet2) > 10 1 j det(jet1)j < 3:0 njets 4 ET , ET 6 cal 6 > 15 neural network O(NNcosmic) > 0:85
1 2 .

W j j , QCD W j j , QCD tt; QCD QCD, W j j Cosmic rays
-

tb tqb tt W W W W W QCD bb cc jj W Z

61% 47% 15% 30% 24% 22% 34% 37% 1:1% 5% 4.5: 91

82% 68% 19% 75% 77% 64% 50% 60% 10% 12%

71% 68% 39% 43% 37% 35% 57% 58% 23% 13% .

53% 54% 27% 47% 46% 35% 52% 45% 9% 5%


4.2.4
. , . . , , , , , : : tb : tqb -

{ s{ t{ { { { {
W+ (u, d, or g): \W j j " W+ (b, c, or s): \W bb" tt W W + W Z : \W W " QCD ) \QCD"
. . , : 5

(

-

, . . ,

, 20 4.6:

-

W

4.7.

,

-

,

.

W j j W bb, 4.8, 4.9, 4.10, 4.11 , .
92


tb tqb W jj W bb tt WW QCD
4.6:

15293 12845 3515 8990 3918 6000 3352 .

8062 8496 1942 4783 4637 3924 5018

W jj W bb tt WW QCD

e14{16{1 14{19{1 9{20{1 14{30{1 16{17{1
4.7:

s-

14{24{1 14{19{1 9{20{1 14{19{1 16{20{1

tb

e14{18{1 14{20{1 9{20{1 14{27{1 16{28{1

t-

tqb 14{21{1 14{17{1 9{19{1 14{23{1 16{15{1
:

.
{ {

93


N jet1 1 ET jet2 2 ET det 3 j jet1j det 4 j jet2j 5 pj1j2 T j1j2 6 MT 7 M j1j2 8 Rj1j2 9 jY j1j2j 10 pT : 1 pT 11 pT : 2 pT 12 Mbest 13 Mall . 14 Pall min 4.8: W jj

W j j W bb
1 2

1 2

12

3,

(= s) ^

W bb

.

-

94


N 1 2 3 4 5 6 7 8 9

tt Mall Malljets (Malljets)0 (Halljets)0 alljets 0 HT P P alljets T jet1 0 ET jet2 0 ET ET 6
. 4.9: (= s) ^ ,
0

,

t , , t t

t

. 1, 2,

t t

tt

,

95


N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 p

WW
jet1 ET jet2 ET pj1j2 T j1j2 MT j1j2 HT jY j1j2j pT : pT : Mbest

1 2 12
1 2

pT pT
Min. 3-

all min pW T 0 PTalljets M j1j2 ?M W MW W ? P alljets T T

P

P

P

T

l; , M
W

t

PT ,

M

j1j2

l;

WW

4.10: .

,

96


N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 p

QCD
jet1 ET jet2 ET

j

p p

jY j1j2j
T T

det jet1 j pj1j2 T M j1j2

1 2

1

:1 :2

Mbest Mall

pT pT
Min. 3(= s) ^

ET 6 W MT palljets T P E alljets 0 T W ? P alljets T T

P

all min

PT ET PT ,

l; l;
,

4.11: QCD .

97


, ,

,

,

" .

t" .

l;

-

4.2.5
. ( 4.9, 4.10, 4.11, 4.12, 4.13. ). . , , , . -

4.2.6

D
5 . , ). 5 , , ( , , (Random Grid Search), . 98 . . 5 ,

-

.

-


No. of Evts / 0.1 bin

600 400 200 0 0 0.5 1 NN-Wjj-tb Output

No. of Evts / 0.1 bin

800

800 600 400 200 0 0 0.5 1 NN-Wjj-tqb Output

No. of Evts / 0.1 bin

300 200 100 0 0 0.5 1 NN-Wjj-tb Output

No. of Evts / 0.1 bin

400

400 300 200 100 0 0 0.5 1 NN-Wjj-tqb Output

. 4.9: .

W jj

4-

;

, . 4-

99


No. of Evts / 0.1 bin

2000 1000 0 0 0.5 1 NN-Wbb-tb Output

No. of Evts / 0.1 bin

3000

3000 2000 1000 0 0 0.5 1 NN-Wbb-tqb Output

No. of Evts / 0.1 bin

1000 500 0 0 0.5 1 NN-Wbb-tb Output

No. of Evts / 0.1 bin

1500

1500 1000 500 0 0 0.5 1 NN-Wbb-tqb Output

. 4.10: .

W bb

4-

;

, . 4-

100


No. of Evts / 0.1 bin

1500 1000 500 0 0 0.5 1 NN-tt-tb Output

No. of Evts / 0.1 bin

1500 1000 500 0 0 0.5 1 NN-tt-tqb Output

No. of Evts / 0.1 bin

2000 1000 0

No. of Evts / 0.1 bin

2000 1000 0

0

0.5 1 NN-tt-tb Output

0

0.5 1 NN-tt-tqb Output

. 4.11:

tt

4;

, . 4-

.

101


No. of Evts / 0.1 bin

1000 500 0 0 0.5 1 NN-WW-tb Output

No. of Evts / 0.1 bin

1500

1500 1000 500 0 0 0.5 1 NN-WW-tqb Output

No. of Evts / 0.1 bin

750 500 250 0 0 0.5 1 NN-WW-tb Output

No. of Evts / 0.1 bin

1000

1000 750 500 250 0 0 0.5 1 NN-WW-tqb Output

. 4.12: .

WW

4-

;

, . 4-

102


No. of Evts / 0.1 bin

2000 1000 0 0 0.5 1 NN-QCD-tb Output

No. of Evts / 0.1 bin

3000

3000 2000 1000 0 0 0.5 1 NN-QCD-tqb Output

No. of Evts / 0.1 bin

2000 1000 0 0 0.5 1 NN-QCD-tb Output

No. of Evts / 0.1 bin

3000

3000 2000 1000 0 0 0.5 1 NN-QCD-tqb Output

. 4.13: .

QCD

4-

;

, . 4-

103


.

4.14{ 4.21 D , ; , (NN Cuts)

20-

, .

(Loose Cuts),

4.2.7
4.3

4.12 ,

, .

.

-

-

4.3.1
, , : : . .

-

{ tb = 16% { tqb = 15%
:

(NLO 80]) (NLO 79]) (LO, 81]) (LO, 81]) (LO, 81]) (NLO, 82]) (NLO, 83])

{ { { { { {

W W W W W tt

bb cc jj W Z =

= +32%; ?23% = +32%; ?23% = +21%; ?17% = 2:2% = +8:9%; ?2:4% 28% (Tevatron)

104


tb Electron + Jets / Notag
175 150 125 100 75 50 25 0
-1

Events in 92 pb

Events in 92 pb 0 0.5 1 NN Output Events in 92 pb
-1

-1

125 100 75 50 25 0 0 0.5 1 NN Output

300 250 200 150 100 50 0

Events in 92 pb

-1

125 100 75 50 25 0 0 0.5 1 NN Output

0

0.5 1 NN Output

175 150 125 100 75 50 25 0

Events in 92 pb

-1

0

0.5 1 NN Output

. 4.14:

e+

.

105 s-

D

t,

-


tb Electron + Jets / Tag
12 10 8 6 4 2 0 -0.5 10 8 6 4 2 0 -0.5 10 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output
-1

Events in 92 pb

Events in 92 pb 0 0.5 1 1.5 NN Output Events in 92 pb
-1

-1

10 8 6 4 2 0 -0.5 12 10 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output

Events in 92 pb

-1

0

0.5 1 1.5 NN Output

Events in 92 pb

-1

. 4.15:

e+

/

.

106 D s-

t,

-


tb Muon + Jets / Notag
-1

Events in 88 pb

80 60 40 20 0 0 0.5 1 NN Output

Events in 88 pb

-1

100

90 60 30 0 0 0.5 1 NN Output

350 300 250 200 150 100 50 0

-1

Events in 88 pb

Events in 88 pb 0 0.5 1 NN Output

-1

90 60 30 0 0 0.5 1 NN Output

Events in 88 pb

-1

250 200 150 100 50 0 0 0.5 1 NN Output

. 4.16: + .

107 s-

D

t,

-


tb Muon + Jets / Tag
-1

Events in 88 pb

8 6 4 2 0 -0.5 6 4 2 0 -0.5 10 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

Events in 88 pb

-1

10

8 6 4 2 0 -0.5 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

-1

Events in 88 pb

Events in 88 pb

-1

. 4.17: + / .

108 D s-

Events in 88 pb

-1

t,

-


tqb Electron + Jets / Notag
175 150 125 100 75 50 25 0
-1

Events in 92 pb

Events in 92 pb 0 0.5 1 NN Output Events in 92 pb
-1

-1

125 100 75 50 25 0 0 0.5 1 NN Output

350 300 250 200 150 100 50 0

Events in 92 pb

-1

125 100 75 50 25 0 0 0.5 1 NN Output

0

0.5 1 NN Output

175 150 125 100 75 50 25 0

Events in 92 pb

-1

0

0.5 1 NN Output

. 4.18:

e+

.

109 t-

D

t,

-


tqb Electron + Jets / Tag
-1

Events in 92 pb

8 6 4 2 0 -0.5 12 10 8 6 4 2 0 -0.5 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

Events in 92 pb

-1

10

8 6 4 2 0 -0.5 10 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

-1

Events in 92 pb

0

0.5 1 1.5 NN Output

Events in 92 pb

-1

. 4.19: + / .

110 D t-

Events in 92 pb

-1

t,

-


tqb Muon + Jets / Notag
-1

Events in 88 pb

80 60 40 20 0 0 0.5 1 NN Output

Events in 88 pb

-1

100

75 50 25 0 0 0.5 1 NN Output

-1

Events in 88 pb

200 150 100 50 0 0 0.5 1 NN Output

Events in 88 pb

-1

250

80 60 40 20 0 0 0.5 1 NN Output

Events in 88 pb

-1

200 150 100 50 0 0 0.5 1 NN Output

. 4.20: + .

111 t-

D

t,

-


tqb Muon + Jets / Tag
-1

Events in 88 pb

8 6 4 2 0 -0.5 6 4 2 0 -0.5 10 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

Events in 88 pb

-1

10

6 4 2 0 -0.5 8 6 4 2 0 -0.5 0 0.5 1 1.5 NN Output 0 0.5 1 1.5 NN Output

-1

Events in 88 pb

Events in 88 pb

-1

. 4.21: + / .

112 D t-

Events in 88 pb

-1

t,

-


%

N

.

% 64% 36% 14% 43% 40% 31% 26% 32% 4% 14% 62% 53% 33% 29% 29% 29% 14% 30% 3% 14% , . 113

. N

% 19% 7% 3% 7% 7% 4% 1% 3% 0:01% 2% 27% 11% 20% 3% 4% 4% 8% 11% 0:2% 4%

. N 1,305 552 110 136 150 85 27 58 13 9 2,101 778 687 68 86 77 157 203 55 14

% 87% 47% 13% 58% 61% 59% 43% 46% 4% 13% 75% 78% 16% 47% 61% 20% 47% 55% 6% 13% . -

. N 1,113 466 105 218 46 4 23 39 14 1 744 1,005 138 174 45 2 29 52 10 1

stb tqb tt W bb W cc W jj WW WZ QCD tqb tb tt W W W W W QCD bb cc jj W Z
14% 6% 5% 4% 4% 3% 1% 2% 1% 3% 16% 7% 12% 2% 2% 2% 2% 3% 1% 2% 1,782 665 137 137 185 96 39 71 28 15 1,748 875 362 67 88 73 69 85 18 10 1,741 613 124 381 103 9 18 53 11 2 t1,060 1,478 300 272 82 8 14 57 15 2

4.12: .

,


.

. .

b
. ID ID ID . . "Bad jets" J3M/EJH . 4.13:

p | p (W +jets) | p (tt) | p p 0:4% { 12% p | p( 4:6% ( p .) p .) | 5% { 7% | p p 0:4% { 137% | p( p( 2:7% { 4:9% | p( e) p( e)) 1:2% { 10% p ) | p( 1:2% { 5:3% ( p .) p .) | 0:1% |
4:41% 2:2% { 32% 28% | | | 3:5% 13:9% { 16:8% 12:2%{ 20:0% . | | | | | |

QCD

mis-ID mis-ID

p(e) p( p( e) )

114


(

3.6 4.14. 4.16 4.15 . (

)

4.13 -

4.3.2

4.17 . 4.18, 4.19 , 4.20 ). , .

. D. (

) -

,

4.3.3

t

.

st
, , , . 95%

.
4.4

4.21

, (pp ! tb + X ) < 17 pb ( (pp ! tqb + X ) < 22 pb (

,

:
tb classic < 39 pb) tqb classic < 58 pb)

-

115


tb
. . 0.4 4.7 5.0 1.3 1.7 3.2 0.1 0.7 5.0 3.9 7.1 0.1 9.5 1.2 . . 0.8 4.7 5.0 1.6 4.4 2.8 0.1 0.2 5.0 5.7 2.5 0.1 8.0 0.9 .

tqb
. 0.5 4.7 5.0 2.2 1.7 3.3 0.1 0.7 5.0 3.9 7.1 0.1 9.6 1.1 . . 0.8 4.7 5.0 2.1 4.5 2.8 0.1

"trig ": " frag "JES "lepID ": "badjet
. .

B

0.2 5.0 3.8 2.4 0.1 . . 6.7 0.8

ID

6.8
0.4 5.0 4.5 2.5 0.1

8.1
0.4 4.7 5.0 1.6 1.7 3.3 0.1

7.9 2.0

9.6
1.0 5.0 5.5 7.0 0.1 10.3 2.8

9.3
0.8 4.7 5.0 1.3 4.5 2.8 0.1

8.8 3.1

8.0
0.3 5.0 10.0 2.5 0.1 11.5 2.4

8.5
0.5 4.7 5.0 3.2 1.8 3.3 0.1

8.1 2.5

9.6
0.8 5.0 6.6 7.2 0.1 11.0 2.2

9.6

9.0 3.5 0.8 4.6 5.0 2.2 4.5 2.8 0.1

"trig ": " frag "JES "lepID ": "badjet
. .

B

ID

. . 4.14: .

7.5

7.2 2.4

8.4

8.0 2.5

10.6

9.4

8.8 3.3

11.7
(

9.1

8.5 3.2

11.2 9.8
)

8.9 4.1 -

116


tt
. . 1.4 4.8 7.0 2.5 1.8 3.6 0.1 4.4 28.0 30.0 3.4 2.1 7.0 3.2 7.0 0.1 4.4 28.0 30.3 1.6 . . 1.9 4.8 7.0 3.6 4.4 2.8 0.1 4.4 28.0 30.3 3.6 0.3 5.0 9.0 2.4 0.1 4.4 20.8 23.7 1.5 .

W +jets
. 2.2 4.6 5.0 8.6 1.7 3.1 0.1 4.4 22.9 26.1 12.1 1.0 5.0 10.1 7.1 0.1 4.4 20.7 25.0 2.1 . . 6.1 4.6 5.0 7.1 3.7 2.5 0.1 4.4 21.1 24.9 16.7

"trig ": " frag "JES "lepID ": "badjet

B

0.9 7.0 4.6 2.5 0.1 4.4 28.0 . . 29.7 1.8

ID

L

. .

29.7 30.2 30.3 30.5 23.8 28.8 25.1 30.0
( . -

)

4.15:

117


tt
. . 2.1 4.8 7.0 1.1 1.9 3.7 0.1 4.4 28.0 30.0 9.0 2.1 7.0 7.8 7.0 0.1 4.4 28.0 31.1 9.3 2.1 7.0 1.0 7.0 0.1 4.4 28.0 30.1 3.7 . s. 1.9 4.8 7.0 1.3 4.4 2.8 0.1 4.4 28.0 30.1 10.3 3.0 5.0 5.7 2.4 0.1 4.4 21.3 23.4 9.4 4.1 5.0 19.5 2.4 0.1 4.4 20.6 29.5 10.8 .

W +jets
. 4.9 4.6 5.0 13.3 1.7 3.2 0.1 4.4 24.0 29.2 19.7 3.4 5.0 14.1 6.7 0.1 4.4 21.4 27.6 10.1 2.4 5.0 23.1 6.9 0.1 4.4 19.9 32.0 10.1 . . 4.6 4.6 5.0 13.7 4.2 2.8 0.1 4.4 22.3 28.2 25.3 5.5 4.6 5.0 37.9 4.5 2.7 0.1 4.4 21.7 45.1 16.9

"trig ": " frag "JES "lepID ": "badjet

B

0.9 7.0 12.7 2.5 0.1 4.4 28.0 . . 31.9 8.5 0.9 7.0 8.0 2.5 0.1 4.4 28.0 . . 30.1 5.2

ID

L

. .

33.0 31.3 32.5 31.8 25.2 35.2 29.4 37.9
t1.9 4.7 7.0 2.8 1.8 3.3 0.1 4.4 28.0 30.0 5.6 1.9 4.7 7.0 2.6 4.3 2.7 0.1 4.4 28.0 30.2 9.2 5.5 4.6 5.0 13.5 1.6 2.9 0.1 4.4 23.6 29.1 23.0

"trig ": " frag "JES "lepID ": "badjet

B

ID

L

. .

30.8 30.6 30.4 31.5 31.4 37.1 33.6 48.2
( 118 . -

)

4.16:


.

. 0:390 0:007 0:031 0:298 0:006 0:024 0:320 0:006 0:025 0:202 0:005 0:016

tb tqb tb tq NN tb NN tq b stb

3:35 0:02 0:20 3:87 0:02 0:24 2:04 0:02 0:14 1:81 0:02 0:14

0:290 0:007 0:021 0:204 0:005 0:016 0:285 0:007 0:033 0:126 0:004 0:011 1:78 0:02 0:16 2:13 0:02 0:20 1:27 0:02 0:12 1:44 0:02 0:14 0:270 0:006 0:024 0:208 0:005 0:018 0:143 0:004 0:013 0:113 0:004 0:010

tb tqb tb tq NN tb NN tq b stb
4.17:

0:245 0:007 0:025 0:124 0:004 0:011 0:385 0:009 0:042 0:085 0:003 0:008 ( . ). -

119


D . . 0:27 0:05 0:40 0:07 7:05 0:92 1:04 4:51 0:62 0:18 2:12 0:31 0:35 1:31 0:08 0:03 . 1:18 0:22 2:74 0:50 21 6 31 961 24 3 79 3; 084 6 2 11 235 3 0 16 56 . 0:18 0:03 0:27 0:05 4:50 0:51 0:49 1:53 0:46 0:10 71:40 145 1:36 0:17 0:17 0:64 0:08 0:02 17:35

tb tqb tt W W W W W QCD D bb cc jj W Z

2:32 0:41 5:21 0:88 41 13 71 2; 226 51 7 | 12; 255 12 4 24 513 4 1 111

| 80 116+11::75 ?10

+13:07 ?12:03

tb tqb tt W W W W W QCD .
D 4.18: D

1:41 0:25 2:44 0:43 6:19 3:84 17:34 498:69 17:29 2:65 112:16 658:15 1:84 1:30 5:97 119:59 1:98 0:36 13:42 129:34

0:22 0:04 0:27 0:05 1:37 0:69 0:80 2:88 0:31 0:11 9:79 15:96

0:84 0:16 1:85 0:34

0:10 0:02 0:15 0:03 1:22 0:24 0:23 0:54 0:24 0:05 6:66 9:17 0:37 0:08 0:08 0:26 0:05 0:01 2:40 2:47

bb cc jj W Z

0:41 7:99 2:42 0:23 2:43 0:84 0:27 11:31 3:97 0:95 331:73 84:49 0:05 13:47 1:65 0:02 1:83 0:28 1:32 18:56 3:72 1:99 387:31 91:12
97 398+20::94 ?19

64 558+24::61 ?23

83 14+4::70 ?3

95 8+3::77 ?2

Run I.

,

-

120


D

tb tqb tt W bb W cc W jj WW WZ QCD . D tqb tb tt W W W W W QCD . D bb cc jj W Z

NN , s0:201 0:037 0:141 0:026 0:162 0:032 0:145 0:027 0:285 0:094 0:149 0:051 0:770 0:272 13:763 3:451 0:240 0:106 0:064 0:017 1:060 0:234 16:476 3:825 959 15+4::829 ?3 0:098 0:022 0:759 0:234 0:073 0:028 0:364 0:132 10:161 3:264 0:430 0:109 0:077 0:030 0:765 0:200 12:726 3:576 267 10+4::109 ?3 , 0:098 0:018 0:195 0:061 0:298 0:101 0:316 0:111 0:890 0:418 0:082 0:028 0:036 0:007 0:365 0:114 2:280 0:605 638 2+2::292 ?1 NN 0:385 0:075 0:170 0:031 0:118 0:022 0:449 0:137 0:204 0:071 0:233 0:086 0:833 0:389 0:045 0:015 0:034 0:009 0:290 0:079 2:205 0:556 638 2+2::292 ?1 0:136 0:025 0:248 0:080 0:163 0:060 0:736 0:266 14:562 4:277 0:185 0:074 0:058 0:017 0:003 0:002 16:091 4:656 110 9+4::944 ?2 , t0:496 0:096 0:097 0:020 1:579 0:479 0:081 0:030 0:422 0:160 13:181 4:596 1:078 0:308 0:204 0:045 0:031 0:030 16:673 5:125 830 14+4::797 ?3

.

.

.

. 0:082 0:016 0:068 0:013 0:157 0:050 0:139 0:048 0:139 0:053 0:317 0:202 0:100 0:035 0:021 0:005 0:264 0:092 1:206 0:304 300 1+2::827 ?0 0:110 0:020 0:074 0:014 0:193 0:061 0:112 0:042 0:139 0:055 0:109 0:170 0:112 0:027 0:025 0:006 0:384 0:131 1:148 0:294 300 1+2::827 ?0

4.19: D

. Run I. 121

st

,


NN sNN t4.20:

+17:6 ?0:79 ?0:31 ?0:64

.

+9:0 ?0:58 ?0:27 ?0:25

.

+7:6 +0:09 ?1:30 ?0:49

.

+3:1 ?0:38 ?0:27 ?0:25

.

.

-

95%

st-

tb
.+ tqb .+ 4.21: 95% . .

e+
117:8 27:2 27:0 131:0 43:4 41:6 D 164:9 107:3 64:3 23:2 64:1 24:6 156:1 141:4 82:1 35:1 76:6 40:1 44:5 26:1 21:6 40:8 43:0 27:5 Tevatron, . 45:3 38:2 25:5 42:6 56:6 30:6

e+
35:2 18:4 17 33:5 29:3 22 -

Run I.

122


: ; , , , { , . 19]-24]. CDF, -

bTevatron b.

.

.

123


5 LEP II
, Tevatron 86]. FNAL. K , 25] LEP II , ,

.
6. -

m

H

115

1996

LEP II.

. LEP II. -

HZ

,

ps.
WW.

5.1

, 124

LEPII

-


. :

,

. -

87, 88, 89]

(5.1) (5.2) (5.3)

e+e? ! + ?bb e+ e? ! bb e+ e? ! e+e?bb
(5.2) (5.3) ( Zee

5.1):

e+e? !

,

H 91],

e+e? ! H Z 90]
. ,

WW.
, (
ee

). 5.2

ps = m + m H p.s < m + m , ( H Z e+e? ! e ebb
, , . ,

Z

bb,
, -

88], m H + mZ )

LEPII. ps = m + m ( , H pZ mH = s ? mZ ). 10 . b, , 11 -

ps ? m, LEPII, mH = Z+ m
b88] (23 -

m 10
92]. 92]

bb).
93],

ee

bb

bb e+e? !
ee

2!3 125

H.


2!4 94].

ZZ 100

,

5.3 . 5.2 LEPII

5.1 (25

) -

, .

mH + m .

Z

-

.
5.2

b-

,

. . .

CompHEP 33] , 5.1. . 21 ( e; ; ) 5.1 -

95].

-

-

e

+ e?

!

ee

. bb

-

ps = 175

Z

m = 0; 5; 10 . H ,Z W .

,

ps = 205. -

10

\ " 1 ! k2 ? m1 + im? 2 k 2 ? m2 + i . 126

.


e?

- A @b ? Ib e? ? e+ Z ? @ I

e e

- ?e 6? b H W + 6@ b I e+ @e I e e?- Z ? @e I ?? e b e+ A ? @b I
e? W+

e? A e?

- @b ? ? Ib R W + 6@ e+ @ I e?R @ A ?b e+ ? b ? b ? Z ? @ I

e? W+ e+ e e Z
e

e e

- ?e 6? e ?b @b I e?R @ A ?b e+ ? b 6 b ? Ze ? @e I e? W W e+

- ?e 6? b A W + 6@ b I e+ @e I e e?- ? W+ 6 e ? ?? b e e+ A ? @b I e?R @Z? e e+ ? e ? e ? Zb ? @b I - e e? +6 -b W u 6b +6 W e e+
e? W+

?b e?R H @ b @Z I e+ ? Z e ? @e I b e?- Z ? e?- Z ? @b I I ? ?@ ?? e e e b e+ Z ? e+ Z ? @e @b I I e e?- ? W+ 6 b Z? W + 6@ b I e+ @e I e e?- ? e?--e ? W+ 6 e Z ? W + 6? b @b I e? ? b + Z ? e+ e @b @ I I e?R @ Z ? e e?R Z ? b @ e+ ? e 6 e e+ ? b ? b ? ? Zb Z ? ? @ @b I I - e e? - - e +6 6 - b W +- b c t6 6b b +6 W+ 6 e e+ e

e e

e

e? Z e?

e

e e

- @b ? ? Ib R W + 6@ e+ @ I e?R @ Z ?b e+ ? b 6 b ? Z ? @ I

e e

e e

. 5.1: 127

e + e? !

ee

bb


\

"

k 2 ? m2 + i ; k2 ? m2 + im?
, . (. , ,

mH = 90 Z
. , .

5.1) 25%. \o " , HZ ,

ps = 175

,

, , , 5.1). mH =90 -

96];

e

+ e?

!Z Z ,e

+ e?

!Z

(

. e + e? ! Z H

,

2m (5

Z

LEPII

m H + mZ )
tot

e + e? ! e e H e p e eZ . ! s =p 175 , s =175 .
+ e?

(e+ e? !

ee

H ) B r(H ! bb) = 7:9 f b;

,
tot

(e+e? !

ee

Z ) B r(Z ! bb) = 0:79 f b:

. .

,

).

2!3

30.4 fb

ps = 205
Z

.

41.4 fb

5.2

e+e? !

ee

Z (9
10 2mZ , ;

-

5.3.

128


mH ,GeV 85 fb] tot xed ? 34.8 tot fb] overall ? 33.7 channel e tot fb] xed ? 17.9 8.4 8.4 tot fb] overall ? 17.3 8.2 8.2 ps mH ,GeV 115 tot fb] xed ? 98.6 tot fb] overall ? 98.2 channel e fb] tot xed ? 39.1 29.8 29.8 tot fb] overall ? 38.8 29.7 29.7
5.1:

ps =175 GeV
90 20.0
e

95 16.0
e

14.1 4.4 3.6

15.3 3.6 3.6 125 89.9 89.6 3.6 3.6

11.2 4.4 6.9 3.6 =205 GeV 120 92.0
e

8.7 8.2

91.6

e

35.7 28.2 28.2 34.2 27.9 27.9 35.4 28.1 28.1 33.9 27.8 27.8

e+ e? !
, , ?Z = 2.50

bb ( = e; ; ),
,

mZ = 91:19

.

: mb = 4:3 , sin2 #w = 0.225, = 1=128.

, ( ) . LEPII (15

-

2!4

, 5.2 10 .

ps ,= 205 , 2mZ ),
129


mH ,

ps =175

mH ,

ps =205

85 4.2 5.5 5.0 14.5 115 3.2 2.2 2.8 8.1

90 3.4 1.5 2.9 7.8 3.15 120 2.6 0.6 1.6 4.8 30.6 2!4

95 2.7 0.7 1.9 5.3 125 2.0 0.3 1.1 3.4 ( fb) 2!4 -

5.2:

e+e?

!

ee

bb.
5

M (bb) = mZ .

5.3

LEPII

. , . ,

b, Pythia/Jetset ,64 80 -

Pythia5.7/Jetset7.4 34]. CompHEP b, . JETSET ('
0

.

Jetset LUCELL.

, , 130

, .

= ?ln(tg(#=2))) ,

?4

.

4.


[fb]

140

[fb]
170 172 174 176 178 180 182 184 186 188


120

90

80 100 70 80

60

60

50

40 40 30 20

20

0

10 190 0 170 172 174 176 178 180 182 184 186 188


s [GeV]

190

. 5.2:

s [GeV]

e+ e? !

e+e? ! e ebb. (fusion) ps m = m H + mZ ? . HZ ZZ. mH = 90, 95, 100 .
ee

Z.

(Z Z ),

. 5.3:

0 ET smear 0.1 0.1.

ed

2E

T true

.

0.5* E

p

T cell

T cell

(px; py ; pz ; E ; m)

cell

=E

(cos'; sin'; sinh ; cosh ; p2=ET

cell

) .

b-

E ET

T cell min

('; )
min

>5 ,
, 5.4 - 5.9

= 15

R= . ( 131

p'

2

+

,

. =0.5 . )

2

bb


(mH + mZ > 175 mH = mZ (

( ps = 175

). ). ( 5.7 - 5.9),

5.4 - 5.6 .

,

-

HZ

ps = 97]) 2mZ , 205 .

bb

. 5.4:

ee

bb:

) ( ps = 175 , .

85

). MH =

e

+ e?

(

! bb

. 5.5:

ee

bb:

) ( ps = 175 , .

90

e + e? ! (). MH =

5.4

mH + m

Z

,

e
132

+ e?

! bb

-


, . , 25].

. (

ps = 175
. 2mZ ) .

,

b-

bb

. 5.6:

ee

bb:

) ( ps = 175 , .

95

). MH =

e

+ e?

(

! bb

. 5.7:

ee

bb:
(p

) , s = 205 .

115

e+e? ! (). MH =

133


bb

. 5.8:

ee

bb:
(p

) , s = 205 .

120

). MH =

e

+ e?

(

! bb

. 5.9:

ee

bb:

) (p , s = 205 .

125

e + e? ! (). MH =

134


: 1. LHC. 2. . 3. (FNAL) 1800 (Run I) (pp ! tb + X ) < 39 pb ( (pp ! tqb + X ) < 58 pb ( 4. , ( ) .

, CompHEP

Tevatron { SingleTop. (NLO) . . D . Tevp atron s= . 0:04 pb) 0:19 pb) -

-

tb S Mb = 0:73 tq S M = 1:70

. 135

-


. , : (pp ! tb + X ) < 17 pb ( (pp ! tqb + X ) < 22 pb ( 5. -

) ) . . -

W tb W tb W tb , Tevatron (Run II) LHC.
,

6.

LEPp II (s) = MH + MZ .

. -

p(s) M

H

.

136


. , . , D .

, , , . -

Ann Heinson , .

, INTAS,

137


1] F. Abe et al., (CDF Collaboration), Phys. Rev. Lett. 74, 2626 (1995). S. Abachi et al., (D Collaboration), Phys. Rev. Lett. 74, 2632 (1995). 2] L. Demortier et al., The Top Averaging Group, for the CDF and D Collaborations, Fermilab-TM-2084 (1999). 3] Glashow S.L., 1961, Nucl. Phys. 22, 579 4] Weinberg S., 1967, Phys. Rev. Lett., 19, 1264 5] Salam A., 1968, in Elementary Particle Theory: Relativistic Group and Analyticity ( Nobel Symposium #8), edited by N.Svartholm, p. 367 6] Higgs P. W., 1964, Phys. Rev. Lett. 12, 132 7] Bardeen W.A, H.Fritzsch and M. Gellmann, 1973, in Scale and Conformal Symmetry in Hadron Physics, edited by R.Gatto (Wiley, New York), p.139 8] Gross D.J. and F. Wilczek, Phys. Rev.D 8, 3633; Weinberg S., Phys.Rev.Lett 31, 494 9] Gross D. J. and F. Wilczek, Phys. Rev. Lett. 30, 1343 10] Politzer H. D., 1973, Phys. Rev. Lett. 30, 1346 11] A.S. Belyaev, E.E. Boos, L.V. Dudko \Single top quark at future hadron colliders: Complete signal and background study", Phys.Rev.D59 (1999) 075001. 12] E. Boos, L. Dudko and V. Savrin, CMS Note 2000/065 13] E.E. Boos, L.V. Dudko and V.I. Savrin \Single top quark physics at LHC" In Proceedings of XVth International Workshop High Energy Physics and Quantum Field Theory, Russia, Tver, September, 2000 138


14] A. Belyaev, E. Boos, L. Dudko, \Single top quark and light Higgs boson at Tevatron" Talk given at 32nd Rencontres de Moriond: Electroweak Interactions and Uni ed Theories, Les Arcs, France, 15-22 Mar 1997, hep-ph/9804328. 15] A. Belyaev, E. Boos, L. Dudko, A. Pukhov \W + 2 Jets Production at Tevatron: Vecbos and CompHEP Comparison", D0-NOTE-2784, Nov 1995.; hep-ph/9511306. 16] E. Boos, L. Dudko and T. Ohl, \Complete calculations of W b anti-b and W b anti-b + jet production at Tevatron and LHC: Probing anomalous W t b couplings in single top production," Eur. Phys. J. C11, 473 (1999) hep-ph/9903215]. 17] B. Abbott et al. D0 Collaboration], \Search for Electroweak Production of Single Top Quarks" Phys.Rev.D 63(2001)031101(R) 18] A.S. Belyaev, P.C. Bhat, E.E. Boos, L.V. Dudko, K. Gounder, A.P. Heinson, M.S. Mason, J.E. McDonald, H.B. Prosper, N.A. Sotnikova, and S.J. Wimpenny, \Electroweak Production of Single Top Quarks at D ", D Note 3772. 19] B. Abbott et al. D0 Collaboration], \Search for Single Top Quark Production at D Using Neural Networks", Phys. Lett B 20] "Search for Single Top Quark Production at D Using Neural Networks" E. Boos, L. Dudko, A. Heinson, N. Sotnikova D Note 21] L. Dudko, for the D Collaboration, \Use of Neural Networks in a Search for Single Top Quark Production at D ", to appear in the Proceedings of the VIIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Fermilab, IL, October 2000. 22] E.E. Boos and L.V. Dudko, \Singularities of Feynman Diagrams and Optimal Kinematic Variables for Neural Networks", D Note 3612, February 1999. 23] L. Dudko for the D0 and CDF collaborations, \Search for Single Top Quark Production at the Tevatron" In Proceedings of 35th Rencontres de Moriond QCD, Les Arcs, France, March 2000; 24] L. Dudko for the D0 collaboration, \Use of Neural Networks in a Search for Single Top Quark Production with the DZero Detector at 139


the Fermilab Tevatron Collider", In Proceedings of VI International Workshop On Arti cial Intelligence in High Energy and Nuclear Physics, Crete, April, 1999 25] E. Boos, M. Dubinin and L. Dudko, \Higgs boson production under the resonance threshold at LEP II," Int. J. Mod. Phys. A11, 5015 (1996) hep-ph/9602220]. 26] D. Dicus and S. Willenbrock, Phys. Rev. D34, 155 (1986); C.-P. Yuan, Phys. Rev. D41, 42 (1990); G. V. Jikia and S. R. Slabospitsky, Phys. Lett. B295, 136 (1992); R. K. Ellis and S. Parke, Phys. Rev. D46, 3785 (1992); G. Bordes and B. van Eijk, Z. Phys. C57, 81 (1993); D. O. Carlson and C.-P. Yuan, Phys. Lett. B306, 386 (1993); G. Bordes and B. van Eijk, Nucl. Phys. B435, 23 (1995); S. Cortese and R. Petronzio, Phys. Lett. B253, 494 (1991); D.O. Carlson, E. Malkawi, and C.-P. Yuan, Phys. Lett. B337, 145 (1994); T. Stelzer and S. Willenbrock, Phys. Lett. B357, 125 (1995); R. Pittau, Phys. Lett. B386, 397 (1996); M. Smith and S. Willenbrock, Phys. Rev. D54, 6696 (1996); D. Atwood, S. Bar-Shalom, G. Eilam, and A. Soni, Phys. Rev. D54, 5412 (1996); C. S. Li, R. J. Oakes, and J. M. Yang, Phys. Rev. D55, 1672 (1997); C. S. Li, R. J. Oakes, and J. M. Yang, Phys. Rev. D55, 5780 (1997); G. Mahlon, S. Parke, Phys. Rev. D55, 7249 (1997); A. P. Heinson, A. S. Belyaev, and E. E. Boos, Phys. Rev. D56, 3114 (1997); T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D56, 5919 (1997); T. Tait and C.-P. Yuan, MSUHEP-71015, hep-ph/9710372; D. Atwood, S. Bar-Shalom, G. Eilam, and A. Soni, Phys. Rev. D57, 2957 (1998); T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D58 094021 (1998); A. Belyaev, E. Boos, and L. Dudko, Phys. Rev. D59, 075001 (1999), hep-ph/9806332. 27] G.V. Jikia and S.R. Slabospitsky, Phys. Lett B295, 136 (1992). 28] E. Malkawi and T. Tait, Phys. Rev. D 54 (1996), 5758; T. Han and J.L. Hewett, Phys. Rev. D 60 (1999) 074015; S. Bar-Shalom and J. Wudka, Phys. Rev. D60 (1999) 094016. 29] M. Carena, J. S. Conway, H. E. Haber, J. D. Hobbs, et al hep-ph/0010338 30] T.Tait, C.-P.Yuan, hep-ph/9710372 31] T.Tait, C.-P.Yuan CERN-TH/2000-224 32] A.Belyaev, E.Boos CERN-TH/2000-093 140


33] E. E. Boos, M. N. Dubinin, V. A. Ilyin, A. E. Pukhov, and V.I. Savrin, INP MSU 94-36/358 and SNUTP-94-116, hep-ph/9503280; P. Baikov et al., in Proc. of the Xth Int. Workshop on High Energy Physics and Quantum Field Theory, QFTHEP-95, ed. by B. Levtchenko and V. Savrin, (Moscow, 1995), p. 101. 34] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994). 35] G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992). 36] S.Kawabata, Comp.Phys.Comm. 41 (1996) 127; 37] M.C. Smith and S. Willenbrock, Phys. Rev. D 54, 6696 (1996). 38] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D 56, 5919 (1997). 39] D.O. Carlson and C.-P. Yuan, \Studying the Top Quark via the W Gluon Fusion Process", Phys. Lett. B306, 386 (1993). 40] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D58 09402 (1998). 41] V. Ilyin et al. "CompHEP{ PYTHIA interface" (to appear as CMS Note) 42] D.Green, K.Maeshima, R.Vidal, J.Womersley, W.Wu;
CMS Note 1999/048

43] 44] 45] 46] 47]

G.Mahlon S.Parke Phys. Lett. B476 (2000) M. Jezabek and J.H. Kuhn, Phys. Lett. B329 (1994) 317-324 _ TeV-2000 Study Group (D. Amidei et al.), FERMILAB-PUB-96-082. J. Ohnemus , Phys. Rev. D 44, 3477 (1991) T. Han and S. Willenbrock, Phys.Lett B273, 167 (1991) J.Ohnemus and W.J.Stirling, Phys.Rev. D47, 2722(1993) H. Baer, B. Baiely and J. Owens, Phys.Rev. D47, 2730 (1993) 48] E. Laenen, J. Smith, and W.L. van Neereven, Nucl. Phys. B369, 54 (1992); Phys. Lett.B 321, 254 (1994) E.L. Bereger and H.Contopanagos, Phys. Lett.B 361, 115 (1995); Phys. Rev. D 54 3085 (1996) S .Catani, M Mangano, P. Nason, and L. Trentadue, Phys. Lett.B 378, 329 (1996); Nucl. Phys.B 478, 273 (1996) 141


49] D0 Collaboration (S. Abachi et al.), Phys. Rev. D52, 4877 (1995) 50] A.P. Heinson, A.S. Belyaev, E.E. Boos, Phys. Rev. D56, 3114 (1997) 51] F. Abe et al., (CDF Collaboration), Phys. Rev. Lett. D74, 2626 (1995); S. Abachi et al., (D0 Collaboration), Phys. Rev. Lett. D74, 2632 (1995); P. Grannis, plenary talk at the International Conference on High Energy Physics, Warsaw, 1996. 52] A. Blondel, plenary talk at the International Conference on High Energy Physics, Warsaw, 1996, CERN Report No. LEPEWWG/96-02. 53] R. D. Peccei and X. Zhang, Nucl. Phys. B337, 269 (1990); R. D. Peccei, S. Peris, and X. Zhang, Nucl. Phys. B349, 305 (1991). 54] E. Boos, A. Pukhov, M. Sachwitz, and H. J. Schreiber, Z. Phys. C75, 237 (1997); Phys. Lett. B404, 119 (1997). 55] J.-J. Cao, J.-X. Wang, J.-M. Yang, B.-L. Young, and X. Zhang, Phys. Rev. D58 094004 (1998). 56] M. Smith and S. Willenbrock, Phys. Rev. D54, 6696 (1996); T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D56, 5919 (1997). 57] A. P. Heinson, A. S. Belyaev, E. E. Boos, Phys. Rev. D56, 3114 (1997). 58] A. Belyaev, E. Boos, and L. Dudko, Phys. Rev. D59, 075001 (1999), hep-ph/9806332. 59] T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D58 09402 (1998). 60] N. V. Dokholyan and G. V. Jikia, Phys. Lett. B336, 251 (1994); E. E. Boos et al., Z. Phys. C70, 255 (1996). 61] A. Stange, W. Marciano, and S. Willenbrock, Phys. Rev. D50, 4491 (1994); A. Belyaev, E. E. Boos, and L. Dudko, Mod. Phys. Lett. A10, 25 (1995). 62] V. A. Ilyin, D. N. Kovalenko, and A. E. Pukhov, Int. J. Mod. Phys. C7, 761 (1996); D. N. Kovalenko and A. E. Pukhov, Nucl. Instrum. and Meth. A389, 299 (1997). 63] H. Lai, J. Huston, S. Kuhlmann, F. Olness, J. Owens, D. Soper, W.K. Tung, and H. Weerts (CTEQ Collaboration), Phys. Rev. D55, 1280 (1997). 142


64] W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621 (1986); K. Hagiwara, S. Ishihara, R. Szalarski, and D. Zeppenfeld, Phys. Rev. D48, 2182 (1993); K. Hagiwara, R. Szalarski, and D. Zeppenfeld, Phys. Lett. B318, 155 (1993); B. Grzadkowski and J. Wudka, Phys. Lett. B364, 49 (1995); G. J. Gounaris, F. M. Renard, and N. D. Vlachos, Nucl. Phys. B459, 51 (1996). 65] K. Whisnant, J. M. Yang, B.-L. Young, and X. Zhang, Phys. Rev. 467 (1997). 66] C. Caso et al., Particle Data Group, Eur. Phys. J.

D56,

C3, 1 (1998). 67] M. Alam et al., CLEO Collaboration, Phys. Rev. Lett. 74, 2885 (1995). 68] G. L. Kane, G. A. Ladinsky, and C.-P. Yuan, Phys. Rev. D45, 124
(1992).

69] S. Abachi et al. (D Collaboration), Nucl. Instrum. Methods A 185 (1994).

338,

70] P. Bhat hep-ex/9507007; "Bayesian Analysis of Multi-Source Data" P. Bhat, H. Prosper, S. Snyder, FERMILAB-Pub-96/397; A. Mirles and P. Bhat D Note 2669. 71] Scienti c American, 1979, vol.241, p3; . .: ,1984 72] " .. ,.. ,.. , 1993, 24, 6; ?" . : " 681.322 , PC Week

73] " RE, 13/1999

74] Hornick, Stinchcombe, White. Multilayer Feedforward Networks are Universal Approximators. Neural Networks, 1989, v. 2, 5. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathematical Control Signals Systems, 1989, 2. Funahashi. On the Approximate Realization of Continuous Mappings by Neural Networks. Neural Networks, 1989, v. 2, 3. 75] J.J. Hop eld Proc.Nat.Acad.Sci. USA, 1982, vol.79, p.2554.; J.J. Hop eld Proc.Nat.Acad.Sci. USA, 1982, vol.81, p.3088.; J.J. Hop eld Proc.Nat.Acad.Sci. USA, 1982, vol.84, p.8429.; 143


S. Amari IEEE Trans.Syst., Man.Cybern., 1983, vol.13, p.799; J.A. Anderson IEEE Trans.Syst., Man.Cybern., 1983, vol.13, p.799; T. Kohonen Self-organization and Associative Memory. 3-d Edition. Berlin: Springer-Verlag, 1990; T. Kohonen Neural Networks, 1988, vol.1, p.3 76] MLP t
http://home.cern.ch/schwind/MLPfit.html

v1.40,

J.

Schwindling,

B.

Mansoulie,

77] "A Stochastic Approximation Method", H. Robbins and S. Monro, Annals of Math. Stat. 22(1951), p.400 78] "A Hybrid Linear/Nonlinear Training Algorithm for Feedforward Neural Networks", S. McLoone et al., IEEE Transactions on Neural Networks, vol. 9, n 4(1998), p.669 79] T. Stelzer, Z. Sullivan, and S. Willenbrock,\Single Top Quark Production via W -Gluon Fusion at Next-to-Leading Order", Phys. Rev. D 56, 5919 (1997). CTEQ5M1 mt = 174:3 . 80] M.C. Smith and S. Willenbrock,\QCD and Yukawa Corrections to Single Top Quark Production via qq!tb", Phys. Rev. D 54, 6696 (1996). Brian Harris CTEQ5M1 mt = 174:3 . 81] Alexander Belyaev, private calculation using comphep. 82] J. Ohnemus, \Order- s Calculation of Hadronic W ?W + Production", Phys. Rev. D 44, 1403 (1991). 83] J. Ohnemus, \Order- s Calculation of Hadronic W Z Production", Phys. Rev. D 44, 3477 (1991). 84] H.L. Lai et al., Eur. Phys. J. for CTEQ5M1.

C12 (2000) 375. See \Note added in proof "

85] E. Boos, L. Dudko, and T. Ohl, \Complete Calculations of W bb and W bb+jet Production at the Tevatron and LHC: Probing Anomalous W tb Couplings via Single Top", hep-ph/9903215, March 1999. 144


86] A. Belyaev, E. Boos, L. Dudko, \Light and Intermediate Higgs Boson Search at Tevatron Energies", Mod. Phys. Lett. A 10 (1995) 25. A. Belyaev, E. Boos, L. Dudko, \Single top quark and light Higgs boson at Tevatron" Talk given at 32nd Rencontres de Moriond: Electroweak Interactions and Uni ed Theories, Les Arcs, France, 15-22 Mar 1997, hep-ph/9804328. 87] E.Boos, M.Sachwitz, H.J.Schreiber, S.Shichanin, Z.Phys. C61 (1994) 675 G.Montagna, O.Nicrosini, F.Piccinini, Phys.Lett. B348 (1995) 496 88] M.Dubinin, V.Edneral, Y.Kurihara, Y.Shimizu, Phys.Lett. B329 (1994) 379 E.Boos, M.Sachwitz, H.J.Schreiber, S.Shichanin, Int.J.Mod.Phys. A10 (1995) 2067 89] E.Boos, M.Sachwitz, H.J.Schreiber, S.Shichanin, Z.Phys. C64 (1994) 391 90] J.D.Bjorken, in: Proc.of Summer Institute on Particle Physics, ed.by M.Zipf, Stanford, 1976 J.Ellis, M.K.Gaillard, D.V.Nanopoulos, Nucl.Phys. B106 (1976) 292 B.L.Io e, V.A.Khoze, Phys.Elem.Part.At.Nucl.(USSR) 9 (1978) 118 91] D.R.T.Jones, S.T.Petcov, Phys.Lett. B84 (1979) 440 G.Altarelli, B.Mele, F.Pitolli, Nucl.Phys., B287 (1987) 205 92] E.Boos, M.Dubinin, Phys.Lett. B308 (1993) 147 93] W.Kilian, M.Kramer, P.Zerwas, DESY preprint 95-216, 1995 (hepph/9512355) 94] D.Bardin, A.Leike, T.Riemann, Nucl.Phys. B, Proc.Suppl. 37B (1994) 274 D.Bardin, A.Leike, T.Riemann, Phys.Lett. B344 (1995) 383 D.Bardin, A.Leike, T.Riemann, Phys.Lett. B353 (1995) 513 95] F.A.Berends, R.Pittau, R.Kleiss, Nucl.Phys. B424 (1994) 308 T.Ishikawa, T.Kaneko, K.Kato, S.Kawabata, Y.Shimizu, H.Tanaka, KEK report 92-19, 1993 96] A.Aeppli, F.Cuypers, Geert van Oldenborgh, Phys.Lett., B314 (1993) 413 E.Argyres, W.Beenakker, Geert van Oldenborgh, A.Denner, S.Dittmaier, J.Hoogland, R.Kleiss, C.Papadopoulos, G.Passarino, INLO-PUB-8/95 (hep-ph/9507216) 145


97] Z.Kunszt, W.Stirling, Phys.Lett., B242 (1990) 507 N.Brown, Z.Phys., C49 (1991) 657

146