Документ взят из кэша поисковой машины. Адрес оригинального документа : http://theory.sinp.msu.ru/comphep_html/tutorial/node109.html
Дата изменения: Wed Aug 9 20:40:47 2000
Дата индексирования: Mon Oct 1 22:54:06 2012
Кодировка:
Summary of vertices for the boson sector Interaction of
 vector bosons with fermions Lagrangian of
 electroweak interactions Unitary gauge Contents

Summary of vertices for the boson sector

In the case of t'Hooft-Feynman gauge the full set of vertices is described by expressions (10), (13), (16), (18), and (19), where

\begin{eqnarray*}
W^3_\mu &=& \sin{\Theta_w} A_\mu + \cos{\Theta_w} Z_\mu \;; \\
\lambda&=&\left(\frac{g_2 M_H}{2 M_w}\right)^2 \;.
\end{eqnarray*}



The coupling constants $g_2$ and $g_1$ may be expressed in terms of the electromagnetic coupling constant: $g_2 = e \sin{\Theta_w}$ and $g_1 = e \cos{\Theta_w}$ .

In the case of unitary gauge the interaction is defined by a subset of vertices which appears after removing the Faddeev-Popov ghosts and the Goldstone fields.