Документ взят из кэша поисковой машины. Адрес оригинального документа : http://theory.sinp.msu.ru/comphep_html/tutorial/node107.html
Дата изменения: Wed Aug 9 20:40:47 2000
Дата индексирования: Mon Oct 1 22:52:03 2012
Кодировка:
Gauge fixing and ghost terms for the t'Hooft-Feynman gauge Unitary gauge Lagrangian of
 electroweak interactions Lagrangian of
 Higgs field Contents

Gauge fixing and ghost terms for the t'Hooft-Feynman gauge

In the case of t'Hooft-Feynman gauge the gauge fixing terms are

\begin{displaymath}
-\frac{1}{2} (\partial^\mu A_\mu)^2
-\frac{1}{2} (\partial...
...Z\, Z_f)^2
-\vert \partial^\mu W^+_\mu + M_W\, W^+_f\vert^2\;.
\end{displaymath}

The squared divergences of fields transform the quadratic part of Lagrangian for vector bosons to a diagonal form like (4). The squared Goldstone field terms give a mass to the Goldstone particle equal to the mass of the corresponding vector boson field. The off-diagonal quadratic terms, which follow from the gauge fixing Lagrangian, cancel the off-diagonal terms (17) up to complete divergency terms.

According to the general rule (3) the Faddeev-Popov Lagrangian is

\begin{eqnarray*}
&& -A_{\bar{c}} D(W^+c,W^-_c,A_c,Z_c)(\partial^\mu A_\mu) \\ ...
...c}} D(W^+c,W^-_c,A_c,Z_c)(\partial^\mu W^-_\mu +
M_W\,W^-_f)\;.
\end{eqnarray*}



Note that due to (9)

\begin{eqnarray*}
\hat D W^+_{\mu}& =& i\,g_2\, ( W^+_\mu( \sin{\Theta_w} A_c+ \...
...s{\Theta_w} (W^+_\mu W^-_c - W^-_\mu W^+_c)
+\partial_\mu Z_c\;,
\end{eqnarray*}



and according to (14)

\begin{eqnarray*}
D W^+_f &=& W^+_c M_W + \frac{g_2}{2}
( W^+_c ( H -i\,Z_f) +...
...ac{Z_c H}
{\cos{\Theta_w}} - i(W^-_c W^+_f - W^+_c W^-_f)
)\;.
\end{eqnarray*}



After substitution of these derivatives to the Faddeev-Popov Lagrangian we see that it contains the quadratic part:

\begin{displaymath}-A_{\bar{c}}\Box A_c -Z_{\bar{c}}\Box Z_c - W^-_{\bar{c}}(\Box
W^+_c +M_W W^+_c) - W^+_{\bar{c}}(\Box W^-_c +M_W W^-_c)\;,
\end{displaymath}

and the following vertices of interaction:
$\displaystyle -g_2($   $\displaystyle i \,\sin{\Theta_w} (\partial^\mu A_{\bar{c}}) (W^+_\mu W^-_c - W^-_\mu W^+_c)$  
    $\displaystyle + i\,\cos{\Theta_w} (\partial^\mu Z_{\bar{c}}) (W^+_\mu W^-_c - W^-_\mu W^+_c)$  
    $\displaystyle + \frac{M_Z Z_{\bar{c}}}{2}\left(\frac{Z_c H}{\cos{\Theta_w}} -
i(W^-_c W^+_f - W^+_c W^-_f) \right)$  
    $\displaystyle - i(\partial^\mu W^-_{\bar{c}}) ( W^+_\mu( \sin{\Theta_w} A_c+ \cos{\Theta_w} Z_c)
-W^+_c(\sin{\Theta_w}A_\mu+\cos{\Theta_w} Z_\mu))$  
    $\displaystyle + \frac{M_W W^-_{\bar{c}}}{2}
( W^+_c ( H -i\,Z_f) + i\,(2 \sin{\Theta_w} A_c + \cos{\Theta_w}
(1-\tan^2{\Theta_w}) Z_c) \,W^+_f) ) )$  
    $\displaystyle + i(\partial^\mu W^+_{\bar{c}}) ( W^-_\mu( \sin{\Theta_w} A_c+ \cos{\Theta_w} Z_c)
-W^-_c(\sin{\Theta_w}A_\mu+\cos{\Theta_w} Z_\mu))$  
    $\displaystyle + \frac{M_W W^+_{\bar{c}}}{2}
( W^-_c ( H + i\,Z_f) - i\,(2 \sin{\Theta_w} A_c + \cos{\Theta_w}
(1-\tan^2{\Theta_w}) Z_c) \,W^-_f) ) )$  
$\displaystyle )\;.$     (18)


Unitary gauge Lagrangian of
 electroweak interactions Lagrangian of
 Higgs field Contents