Документ взят из кэша поисковой машины. Адрес оригинального документа : http://theory.sinp.msu.ru/comphep_html/tutorial/node100.html
Дата изменения: Tue Aug 15 14:54:18 2000
Дата индексирования: Mon Oct 1 22:51:17 2012
Кодировка:
Local gauge invariance. Gauge fixing
 terms Gauge theories Group Contents

Local gauge invariance.

It is an invariance of Lagrangian under group transformations $g(x)$ which depend on a point in the space-time manifold. Fields in such theories are divided into two classes: matter fields and gauge fields. The gauge fields $A^{\alpha}_{\mu}(x)$ are vector ones. The number of such fields is equal to the number of group generators. The matter fields $\psi^i(x)$ can have an arbitrary Lorentz structure. Their internal components are transformed according to some representation of the group. Let $D(\omega)$ be an operator which performs an infinitesimal transformation of fields under the local gauge transformation. For the matter fields we have

\begin{displaymath}\hat D(\omega)\psi(x)= i\,\omega^{\alpha}(x){\hat \tau}_
{\alpha}\psi(x)\;. \end{displaymath}

For gauge fields the local gauge transformations are defined by

\begin{displaymath}(\hat D(\omega) A_{\mu})^{\alpha}(x)=
f^{\alpha}_{\beta \gam...
...(x) \omega^{\gamma}(x)
+ \partial_{\mu} \omega^{\alpha}(x)\;.\end{displaymath}

The following expressions, namely a covariant derivative and a gauge field tension, are used to construct a local invariant Lagrangian:

\begin{displaymath}\nabla_{\mu}\psi(x) = \partial_{\mu} \psi(x) - \hat D(A_{\mu}...
...} \psi(x) - iA^{\alpha}_{\mu}(x){\hat \tau}_{\alpha}\psi(x)\;; \end{displaymath}


\begin{displaymath}F^{\alpha}_{\mu \nu}(x) = \partial_{\mu}A^{\alpha}_{\nu}(x)
...
...{\alpha}_{\beta\gamma}A^{\beta}_{\mu}(x)A^{\gamma}_{\nu}(x)\;. \end{displaymath}

It can be proved that

\begin{displaymath}\hat D(\omega)[\nabla_{\mu}\psi(x)]= \hat \tau_{\alpha}\omega^{\alpha}(x)
\nabla_{\mu}\psi(x)\;; \end{displaymath}


\begin{displaymath}(\hat D(\omega) F_{\mu \nu})^{\alpha}(x)= f^{\alpha}_{\beta \gamma}
F^{\beta}_{\mu \nu}(x)\omega^{\gamma}(x)\;.\end{displaymath}

In these terms the Lagrangian of gauge theory is defined by the following expression [Bjorken&Drell]
\begin{displaymath}
L = -\, \frac{1}{4g^2} {F^{\alpha}}_{\mu \nu} {F_{\alpha}}^{\mu \nu}
+ L_m( \nabla_{\mu} \psi, \psi)
\end{displaymath} (1)

where $g$ is the coupling constant and $L_m(\partial_{\mu}\psi,\psi)$ is some Lagrangian of the matter fields which is invariant under the global gauge transformations.


Gauge fixing
 terms Gauge theories Group Contents