Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://theory.sinp.msu.ru/~svernov/Papers/Vernov_resume.html
Дата изменения: Wed Jan 6 15:44:10 1999 Дата индексирования: Mon Oct 1 22:51:10 2012 Кодировка: |
Doubly periodic solutions for the Lagrange-Euler equation of the (1+1)-dimensional scalar theory are studied. Provided that nonlinear term is small, the Poincare-Lindstedt method is used to find asymptotic solutions in the standing wave form. If the mass of the scalar field is zero, then the standard zero approximation:
doesn't allow to construct a uniform expansion even to the first order. Such expansion can be found if and only if a zero approximation contains infinite number of harmonics: