Документ взят из кэша поисковой машины. Адрес оригинального документа : http://srcc.msu.ru/nivc/sci/publ/2010/r2n008.htm
Дата изменения: Thu Mar 24 14:28:46 2011
Дата индексирования: Mon Oct 1 20:18:59 2012
Кодировка: Windows-1251
D. Orlovsky, S. Piskarev, R. Spigler. On approximation of inverse problems for abstract hyperbolic equations // Taiwanese Journal of Mathematics. 2010. Vol. 14, N 3B. 1145-1167.

D. Orlovsky, S. Piskarev, R. Spigler. On approximation of inverse problems for abstract hyperbolic equations // Taiwanese Journal of Mathematics. 2010. Vol. 14, N 3B. 1145-1167.

This paper is devoted to the numerical analysis of inverse problems for abstract hyperbolic differential equations. The presentation exploits general approximation scheme and is based on $C_0$-cosine and $C_0$-semigroup theory within a functional analysis approach. We consider both discretizations as well as in space and time. The discretization in time is considered under the Krein-Fattorini conditions.

Ключевые слова: abstract differential equations, abstract hyperbolic problems, $C_0$-semigroups, $C_0$-cosine operator functions, Banach spaces, semidiscretization, inverse overdetermined problem, well-posedness, difference schemes, discrete semigroups.