Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://sinp.msu.ru/en/system/files/preprints/pp-880.pdf
Äàòà èçìåíåíèÿ: Fri Feb 28 00:51:14 2014
Äàòà èíäåêñèðîâàíèÿ: Fri Feb 28 00:51:14 2014
Êîäèðîâêà:
..
- ..

.. , .. , Z=50

2012-2/880

, 2012 .


539.144.3 ..
1, 2

, ..

2

1. .. , 2. - .. .. e-mail: akostuckov@googlemail.com , Z=50 2012-2/880 , Cd, Sn Te. 99 -132 Cd , 100 -135 Sn , 105 -140 Te . .

B.S. Ishkhanov

1, 2

, A.A. Kostyukov

2

1. Lomonosov Moscow State University, Physical Department 2. Scobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University STRUCTURE OF LOW-LYING NUCLEAR STATES NEAR THE CLOSED SHELL Z=50 Preprint MSU SINP N 2012-2/880 Abstract Different factors having effect on the structure of the ground and low energy states of Cd, Sn and Te isotopes were investigated. The sequence of nuclear single-particle shells filling for 99 -132 Cd , 100 -135 Sn , 105-140Te isotopes were constructed. The effect of neutron pairing nuclear forces on the sequence of nuclear shells filling was considered.

© .. , .. © , 2012, http://www.sinp.msu.ru 1


­ , Cd (Z=48) Te (Z=52), Sn (Z=50). NN- . , . : · -. · . · . · . [1,2]. , , , . . , , . , , , Z, , . N Z 2, 8, 20, 28, 50, 82 N = 126 . . [3-5]. , , . : h 2 d 2U h 2 l (l + 1) + [E + - V (r )]U = 0 , 2 m dr 2 2 mr 2 - V0 , r R V (r ) = , r>R , ­ , h ­ , h= 2 l ­ , U ­ . . , , l : l= 0 1 2 3 4 5 6 7 ... s p d f g h i k , 1s, 1p, 2s, 2p, 3s, 3p ..., .. N Z 2


2, 8, 20, 40, 70, 112. .. . , A > 50 . , , . 1949 . . - . [6-8]. , N, Z = 50 , 82 N = 126 , VLS : . . - VLS r r s l . rr VLS = f (r )l s , rr l , s - . j = l + 1/ 2 j = l - 1/ 2 . : n, l, j, m, n ­ , l j ; l ­ ; j ­ ; r m ­ j z. nlj . , 2 s1 / 2 n = 2 , l = 0 j = 1 / 2 ; 3 f 7 / 2 n = 3 , l = 3 , j = 7 / 2 .. - , . f ( r ) . , VLS : - - rr rr r r rr 1 V LS (| r1 - r2 |)[(r1 - r2 ) * ( p1 - p 2 )]( s1 + s 2 ) . 2 , f ( r ) ( r ) / r < 0 , ( r ) - . - r nlj r rr r rr j = l ± 1 / 2 . , j 2 = l 2 + 2l s + s 2 , rr h 2 l / 2, j = l + 1 / 2, ls = 2 j = l - 1 / 2. - h (l + 1) / 2, , - nl (1) E nl ,l -1 / 2 - E nl ,l +1 / 2 = C ls (l + 1 / 2) ,

3


C ls = -h 2 f , f - f ( r ) . .. f ( r ) < 0 , j = l - 1 / 2 , j = l + 1 / 2 . (1), - l. C ls
C ls 20 A
-2 / 3

.

- , 1g 9 / 2 , 1h11 / 2 1i13 / 2 , , N = 3 , N = 4 , N = 5 , , , 50, 82 126 (. 1). N = 3 1 f 7 / 2 , N = 28 .

. 1. . -: , - . , . , , .

4


- : · 1 . .. R = r0 A , r0 1.1 ~ 1.3 , : , E (N , Z ) , A > 10 , 8 A ; , 0.16 / 3 . , .. -, - . , , , . , . J = 0 . - J = 1 , . - J = 1 , J = 1 . , . , ( S = 1 ), L = 0 . , S = 1 , L = 2 . L = 2 , ( ), , r r , , . - , l, j. j = l + 1 / 2 , j = l - 1 / 2 , .
1 3

· · ·

·

·

, . , . , . rvr J j , J = j . - , . j 5


A , . , - J p = 0 + . . . . . B p N Cd ( Z = 48 ), In ( Z = 49 ), Sn ( Z = 50 ), Sb ( Z = 51 ) Te ( Z = 52 ) 1. , [1].

. 2. B p N Cd, In, Sn, Sb, Te. . 2 B p Cd ( Z = 48 ), Sn ( Z = 50 ), Te ( Z = 52 ), , In ( Z = 49 ) Sb ( Z = 51) . N, , Z: In Sb 2.0~2.3 . Ppp , Cd, Sn Te Z ­ , In Sb ­ .

6


1. B p N Cd (Z=48), In (Z=49), Sn (Z=50), Sb (Z=51) B p , N Cd In Sn Sb 47 0.7 48 3.3 49 3.3 0.6 0.6 50 4.1 1.0 2.8 51 4.1 1.6 2.7 52 4.8 1.6 3.6 -1.4 53 4.9 2.2 3.6 -0.5 54 5.7 2.2 4.3 -0.5 55 5.7 2.8 4.4 0.3 56 6.5 2.8 5.2 0.6 57 6.5 3.6 5.3 1.2 58 7.4 3.7 5.8 1.5 59 7.3 4.4 5.8 2.2 60 8.1 4.5 6.6 2.3 61 8.2 5.3 6.8 2.9 62 8.9 5.3 7.6 3.0 63 9.1 6.0 7.6 3.5 64 9.6 6.1 8.5 3.7 65 9.7 6.8 8.8 4.1 66 10.3 6.8 9.3 4.4 67 10.4 7.4 9.4 4.9 68 11.0 7.5 10.0 5.1 69 11.1 8.1 10.1 5.6 70 11.7 8.3 10.7 5.8 71 11.6 9.1 10.8 6.4 72 12.7 9.2 11.4 6.6 73 12.7 9.8 11.5 7.1 74 13.4 10.0 12.1 7.3 75 13.4 10.9 12.3 7.8 76 14.0 11.1 12.8 8.0 77 14.2 11.7 13.0 8.4 78 14.8 11.9 13.6 8.6 79 14.8 13.1 13.5 9.0 80 15.7 12.9 14.5 9.1 81 15.7 14.0 14.7 9.6 82 16.4 13.8 15.7 9.7 83 16.4 14.4 15.8 10.5 84 14.5 16.2 10.2 85 16.1 11.4 86 16.6 11.1 87 12.2 88 Te (Z=52). , Te 0.6 1.7 1.5 2.3 2.4 3.3 3.2 3.7 4.0 4.8 4.8 5.6 5.6 6.4 6.5 7.2 7.4 8.0 8.1 8.6 8.7 9.1 9.2 9.6 9.7 10.0 10.2 10.5 10.6 10.9 10.9 12.0 11.9 12.9 12.9 14.0

7


B p N, 600~800 . In Sb , B p 600~800 . B p , . . , - Pnp 600~800 . Cd, Sn Te, . n-p : , , , . -, , , . 2 , [1], Bn Cd ( Z = 48 ), In ( Z = 49 ), Sn ( Z = 50 ), Sb ( Z = 51 ) Te ( Z = 52 ). . 3 Bn Cd (Z=48), Sn (Z=50), Te (Z=52), In (Z=49) Sb (Z=51), . , N , N. . Pnn 2.5~2.7 . N = 82 - 83 , N = 82 , N > 83 2 f 7 / 2 . N = 81 N = 83 2.2~3.7 . N = 50 , N = 50 .

8


. 3. Bn N: ) Cd, In, Sn, Sb, Te , ) Cd, Sn, Te N.

9


2. Bn N Cd (Z=48), In (Z=49), Sn (Z=50), Sb (Z=51) Te (Z=52). Bn , , N Cd In Sn Sb Te 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 17.5 12.6 15.1 10.3 12.5 9.6 12.0 9.0 11.4 8.4 10.9 7.9 10.3 7.3 9.9 7.0 9.4 6.5 9.0 6.1 8.7 5.8 8.4 5.3 8.1 5.2 7.7 4.7 7.5 4.7 7.0 4.3 6.9 4.0 6.5 1.8 3.5 15.0 15.5 10.9 12.5 10.2 12.0 9.6 11.4 9.2 11.0 8.6 10.4 8.1 10.0 7.7 9.4 7.3 9.0 6.8 8.8 6.4 8.5 6.1 8.2 5.8 7.9 5.5 7.7 5.4 7.3 5.4 6.7 5.0 6.3 2.4 3.6 2.2 3.3 17.7 10.9 13.4 10.1 12.7 9.7 12.2 9.2 11.5 8.7 11.3 8.2 10.8 7.7 10.3 7.5 9.6 6.9 9.3 6.5 9.1 6.2 8.8 5.9 8.5 5.7 8.2 5.6 7.9 5.3 7.6 5.2 7.3 2.5 3.9 2.1 3.8 1.9 11.1 12.7 10.6 12.5 9.9 11.8 9.4 11.4 8.8 10.9 8.2 10.6 7.9 9.9 7.4 9.5 7.0 9.2 6.8 9.0 6.5 8.7 6.2 8.4 6.0 8.1 5.7 7.8 5.8 7.3 3.3 3.6 3.3 3.5 3.0 3.2 13.8 10.4 13.3 10.0 12.7 9.3 11.9 9.1 11.6 8.2 11.3 7.9 10.7 7.5 10.3 7.2 9.8 6.9 9.4 6.6 9.1 6.3 8.8 6.1 8.4 5.9 8.0 5.8 7.7 3.3 4.7 3.2 4.4 2.9 4.3 2.7 3.9

10


Z = 50 B p ( 1) Bn ( 2) N , . 2,3. , A . A . N . , . , : ( (2) Pnn1) ( Z , N ) = Bn ( Z , N ) - Bn ( Z , N - 1) , N ­ . . 4() Pnn ( Z , N ) Cd, Sn Te N. 3. , . 3, N . Pnn ( Z , N ) , ( Z , N - 1) , ( Z , N + 1) . Pnn ( Z , N ) , : ( (3) Pnn2 ) ( Z , N ) = 1 / 2 * [ 2 * Bn ( Z , N ) - Bn ( Z , N - 1) - Bn ( Z , N + 1)] . Bn . 3 N Cd, Sn Te, (3). . 4() N = 54 - 80 . Cd, Sn Te N = 68 - 76 , 1h11 / 2 . ~ 2.7 - 2.8 .

11


( ( 3. Pnn1) Pnn2 ) Cd, Sn Te. N Cd Sn Te (1) ( 2) (1) ( 2) ( ( A A A Pnn Pnn Pnn Pnn Pnn1) Pnn2 ) 50 98 2.53 3.67 100 52 100 2.18 2.54 102 2.53 2.895 54 102 2.43 2.6955 104 2.52 2.72 106 56 104 2.356 2.6625 106 2.49 2.745 108 2.93 3.13 58 106 2.446 2.698 108 2.301 2.582 110 2.78 3.125 60 108 2.416 2.714 110 2.606 2.854 112 2.62 2.695 62 110 2.588 2.7635 112 2.614 2.829 114 2.49 2.93 64 112 2.418 2.636 114 2.555 2.6535 116 3.04 3.212 66 114 2.502 2.7015 116 2.018 2.32 118 2.799 2.9805 68 116 2.559 2.741 118 2.386 2.6155 120 2.757 2.9155 70 118 2.577 2.829 120 2.625 2.7815 122 2.618 2.7625 72 120 2.862 2.92 122 2.641 2.753 124 2.495 2.6745 74 122 2.584 2.837 124 2.541 2.6475 126 2.543 2.6835 76 124 2.82 2.785 126 2.459 2.5505 128 2.494 2.597 78 126 2.32 2.55 128 2.352 2.4615 130 2.337 2.414 80 128 2.59 2.735 130 2.289 2.3315 132 2.116 2.163 82 130 2.5 3.6 132 2.065 3.4545 134 1.851 3.097 84 132 1.7 134 1.454 1.652 136 1.329 1.3995 86 136 1.7 1.8 138 1.24 1.37 88 140 1.33 1.465 90 142 1.2 -

( ( 4. Pnn1) () Pnn2 ) () Cd, Sn Te.

12


, N, Z = 50 - 82 , . 5. Cd Te N = 50 - 82 . Cd ( A > 130 ) Te ( A > 134 ) N = 82 - 126 . Cd 2 p1 / 2 1g 9 / 2 , . Te 1g 9 / 2 , 51- 52- 2d 5 / 2 .

. 5. N=50-82. , ­ N. Cd, Sn Te - , , N = 50 - 82 . , . , Cd, Sn Te. · , N = 50 - 82 ~2.5 .

13


·

· ·

·

2d 5 / 2 N = 50 - 82 1g 9 / 2 N = 28 - 50 ( ) ~4 . 1h11 / 2 N=50-82 2 f 7 / 2 N = 82 - 126 ~4 . Z = 28 - 50 Z = 50 - 82 ( ~5 ), . E 34 A3 4 A 120 E 0.9~1.1 .

, - , , . : · . · J p = 2 + - . · 2- . 4 . 6 J p = 2 + - Cd ( Z = 48 ), Sn ( Z = 50 ) Te ( Z = 52 ). Sn, Z = 50 , 2 + ~1.3 , Cd, 1g 9 / 2 , Te, 2d 5 / 2 , 2 + 0.7-0.8 . J p = 2 + . 2 + N = 82 - N = 82 - Z = 48 , 50, 52. 2 + N = 62 , 64, N = 64 . .. 5 2d 5 / 2 , 1g 7 / 2 , 3s1 / 2 , 2d 3 / 2 1h11 / 2 , N = 50 - 82 , , 2d 5 / 2 , 1g 7 / 2 3 3s1 / 2 , 2d 3 / 2 , 1h11 / 2 . ( 5), (E2) , , Sn, Cd Te . .

14


4. J p = 2 + - Cd (Z=48), Sn (Z=50) Te (Z=52), N ­ . N , , , 100 102 52 1004.11 1472 Cd Sn 102 104 106 54 776.55 1260.1 664.8 Cd Sn Te 104 106 108 56 658.00 1207.7 625.20 Cd Sn Te 106 108 110 58 632.64 1206.07 657.70 Cd Sn Te 108 110 112 60 632.988 1211.88 689.01 Cd Sn Te 110 112 114 62 657.7645 1256.85 708.74 Cd Sn Te 112 114 116 64 617.520 1299.907 678.92 Cd Sn Te 114 116 118 66 558.456 1293.560 605.706 Cd Sn Te 116 118 120 68 513.490 1229.666 560.438 Cd Sn Te 118 120 122 70 487.77 1171.265 564.094 Cd Sn Te 120 122 124 72 505.94 1140.51 602.7271 Cd Sn Te 122 124 126 74 569.45 1131.739 666.352 Cd Sn Te 124 126 128 76 612.8 1141.15 743.219 Cd Sn Te 126 128 130 78 652.0 1168.82 839.494 Cd Sn Te 128 130 132 80 645 1221.26 974.22 Cd Sn Te 130 132 134 82 1325 4041.20 1279.11 Cd Sn Te 134 136 84 725.6 606.64 Sn Te 138 86 443.1 Te

. 6. J p = 2 + - Cd (Z=48), Sn (Z=50) Te (Z=52).

5. Cd (Z=48), Sn (Z=50) Te (Z=52). [9-10]. 15



103 104 105 106 107 108 109 110 112 114 116 118 120 122 109 111 112 114 116 118 120 121 122 123 124 125 127 129 131 120 122 124 126 128 129 130

Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Cd Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Te Te Te Te Te Te Te

, N 55 56 57 58 59 60 61 62 64 66 68 70 72 74 59 61 62 64 66 68 70 71 72 73 74 75 77 79 81 68 70 72 74 76 77 78

2 ( B( E 2)) 0.174 ± 0.024 0.1732 ± 0.0042 0.1752 ± 0.0041 0.1771 ± 0.0039 0.1863 ± 0.0036 0.1912 ± 0.0035 0.1907 ± 0.0034 0.19 ± 0.007 0.172 ± 0.011 0.182 ± 0.045

2 (Qmom ) 0.184 ± 0.171 0.098 ± 0.014 0.079 ± 0.027 0.153 ± 0.023 0.126 ± 0.029 0.153 ± 0.023 0.11 ± 0.017 0.101 ± 0.016 0.094 ± 0.008 0.17 ± 0.039

0.1227 ± 0.0036 0.119 ± 0.013 0.1118 ± 0.0016 0.1106 ± 0.0021 0.1075 ± 0.0011 0.1036 ± 0.0011 0.0953 ± 0.0012

0.066 ± 0.025 0.029 ± 0.016 0.008 ± 0.029 0.043 ± 0.012 0.013 ± 0.036 0.012 ± 0.026 -0.007 ± 0.007 +0.003 ± 0.005 0±0 0.011 ± 0.024 0.034 ± 0.015 0.017 ± 0.037 -0.013 ± 0.027 0.119 0.106 0.046 0.032 0.018 0.034 ± ± ± ± ± ± 0.018 0.017 0.023 0.029 0.005 0.024

0.202 ± 0.021 0.1848 ± 0.0008 0.1695 ± 0.0009 0.1534 ± 0.0016 0.1363 ± 0.0011 0.1184 ± 0.0014

6 - J p Cd, Sn Te. 6 , Cd, Sn Te - J p = 5 / 2 + J p = 1 / 2 + , . Cd Te - J p = 3 / 2 + . 16


. - Cd, Sn, Te. 6. - J p - Cd (Z=48), Sn (Z=50) Te (Z=52). - J p , N 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 Cd (5 / 2) (5 / 2) (5 / 2)
5/ 2 5/ 2 5 1 1 1 1 3 (3 / / / / / / /
+ + +

Sn (5 / 2) (5 / 2) (5 / 2) (5 / 2)
5/ 2
+ + + +

Te (5 / 2) (5 / 2) (5 / 2) (7 / 2)
7 1 1 1 1 1
- + + + +

+ +

+

2+ 2+ 2+ 2+ 2+ 2+ 2)

+ + + + + -

7 / 2+ 1/ 2+ 1/ 2+ 1/ 2+ 1/ 2+ 3 / 2+ 11 / 2 - 11 / 2 - (11 / 2)

/ / / / / /

2+ 2+ 2+ 2+ 2+ 2+
+ +

(3 / 2) (3 / 2) (3 / 2) (3 / 2) (7 / 2) -

3/ 2 3/ 2

(3 / 2) (3 / 2) (7 / 2) (7 / 2) -

+ + - -

3 / 2+ (3 / 2)

+ - - -

(7 / 2) (7 / 2) (7 / 2)

. . j1 j 2 . j1 j 2 (. 7). E 2 - E1 Pnn ( j 2 ) - Pnn ( j1 ) 3 j1 j 2 .

17


. 7. E1 , j1 E2 , j 2 . Pnn ( j1 ) j1 Pnn ( j 2 ) j 2 . I: E 2 - E1 > Pnn ( j 2 ) - Pnn ( j1 ) . , . j1 2 j1 + 1 (). ( j1 )1 ; ( j1 ) 2 ; ( j1 ) 3 ; ...; ( j1 ) 2 j1 +1 ; ( j1 ) 2 j1 +1 ( j 2 )1 ; ( j1 ) 2 j1 +1 ( j 2 ) 2 ; ...; ( j1 ) 2 j1 +1 ( j 2 ) 2 j2 +1 . , , J = j1 J = j 2 , , J p = 0 + . II: Pnn ( j 2 ) - Pnn ( j1 ) > 2( E 2 - E1 ) . j 2 j1 . j1 j 2 . j1 . , .. Pnn ( j 2 ) j 2 , Pnn ( j1 ) j1 , E 2 - E1 , j1 j 2 J p = 0 + . j1 , ( j1 )1 ( j 2 ) 2 . j1 j 2 , ( j 2 ) 4 . , j 2 2 j 2 + 1 . j1 . , j1 j 2 , ( j1 )1 ; ( j 2 ) 2 ; ( j1 )1 ( j 2 ) 2 ; ( j 2 ) 4 ; ....; ( j1 )1 ( j 2 ) 2 j2 +1 ; ( j1 ) 2 ( j 2 ) 2 j2 +1 ; ...; ( j1 ) 2 j1 +1 ( j 2 ) 2 j2 +1 . I . III: E 2 - E1 < Pnn ( j 2 ) - Pnn ( j1 ) < 2( E 2 - E1 ) . j1 j 2 , . 18


j1 . Pnn ( j 2 ) - Pnn ( j1 ) ,

j 2 . , j1 . j1 2 j1 + 1 . j 2 . , .. E1 , j1 j 2 . j1 . j1 . j1 j 2 ( j1 )1 ; ( j1 ) 2 ; ( j1 ) 3 ; ...; ( j1 ) 2 j1 +1 ; ( j1 ) 2 j1 ( j 2 ) 2 ; ( j1 ) 2 j1 +1 ( j 2 ) 2 ; ( j1 ) 2 j1 ( j 2 ) 4 ; ...; ( j1 ) 2 j1 +1 ( j 2 ) 2 j2 +1 . j1 j 2 . J p = 0 + .
Pnn ( j 2 ) - Pnn ( j1 ) > E 2 - . 8 - Cd Te . Sn. J, P, Cd Te N = 50 - 82 ( 7). N = 50 - 82 Sn ( 8). , . 5, , . 8. - Cd, Sn Te - J p = 5 / 2 + J p = 7 / 2 + , , 2d 5 / 2 1g 7 / 2 .
7 / 2 + 5 / 2 + ~200 , 2d 5 / 2 1g 7 / 2 N < 64 . Cd Te N < 60 5 / 2 + . 113.115Te 1g 7 / 2 . N > 64 3s1 / 2 , 2d 3 / 2 , 1h11 / 2 . 200 . Cd Te .

19


. 8. ) Cd, ) Sn, ) Te N.

20


N

7. 2d 5 / 2 , 1g 7 / 2 , 3s1 / 2 , 2d 3 / 2 , 1h11 / 2 , 2 f 7 / 2 Cd (Z=48, A=98-132) Te (Z=52, A=108-136). N ­ . Cd Te 2d 5 1g 7 3s 1 2d 3 1h11 2 f 7 2d 5 1g 7 3s 1 2d 3 1h11 2 f p p 2 2 2 2 2 2 2 2 2 2 2 J J 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 (5 / 2)
+

7 2

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

0 (5 / 2) 0+ (5 / 2) 0 0 0 0
+
+

+

+

+

5/ 2
+

5/ 2
+

+

5/ 2
+

+

1 0 1 0 1 0 1 0 3 0

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

(3 / 2)

+

0 (3 / 2) 0+ (3 / 2) 0+ (3 / 2) 0+ (3 / 2) 0+ (7 / 2) 0
+

+

+

+

+

+

-

-

1 1 1 1 1 2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 -

2 2 4 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -

1 1 1 1 1 2 3 4 4 4 -

2 2 4 4 4 4 6 6 8 8 10 10 12 12 12 12 12 12 12 -

1 2 -

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

(5 / 2)
+

0

+

0+ (5 / 2) 0+ (5 / 2) 0 0 0 1 0 1 0 1 0 1 0 1 0 3 0 3 0 3 0
+
+

+

+

(7 / 2)
+
+

7/2
+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

(3 / 2)

+

0+ (7 / 2) 0+ (7 / 2) 0+ (7 / 2) 0
+

-

-

-

1 1 1 1 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2 4 4 6 6 8 8 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 2 3 4 4 4 4 4 4 4

2 2 4 4 6 6 8 8 8 8 10 10 12 12 12 12 12 12 12 12 12 12 12

1 2 3 4 5 6

21


8. 2d 5 / 2 , 1g 7 / 2 , 3s1 / 2 , 2d 3 / 2 , 1h11 / 2 , 2 f Sn (Z=50, A=100-135). 2d 5 1g 7 3s 1 2d 3 1h11 2 f7 p 2 2 2 2 2 2 N J 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
0+ (5 / 2) 0+ (5 / 2) 0+ (5 / 2) 0+ (5 / 2) 0 0 0
+
+

7/2



+

+

+

+

5/ 2
+

7/2
+

+

1 0 1 0 1 0 1 0 3 0
0

/2
+

+

/2
+

+

/2
+

+

/2
+

+

/2
+

+

11 / 2
+

-

11 / 2

-

0+ (11 / 2) 0+ (3 / 2) 0+ (3 / 2) 0+ (7 / 2) 0+ (7 / 2)
+

-

+

-

-

1 1 1 1 1 2 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

2 2 4 4 6 6 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 2 3 4 4 4 4

2 2 4 4 4 4 6 7 8 9 10 11 12 12 12 12 12 12 12 12

1 2 3

22


Cd Te. Cd.



, 7 / 2 + , 1g 7 / 2 , . 11 / 2 - , 1h11 / 2 . 6
Cd , J p = 5 / 2 + , 4 111,113,115 ,117 Cd , J p = 1 / 2 + 6 119 ,121,123,125,127 ,129 Cd , J p = 3 / 2 + . Cd . Sn [11], . , , J p = 0 + l, j.
99 ,101,103 ,105 ,107 ,109

Cd 2d 5 / 2 1g 7 / 2 . 1g 7 / 2 , 2d 5 / 2 . , ( II) 7 / 2 + . 99 ,101,103,105,107 ,109 Cd 2d 5 / 2 . - 100 ,102 ,104 ,106 Cd 2, 4, 6, 8 1g 7 / 2 . 106 Cd 1g 7 / 2 . 2d
5/2

.

110

Cd

( 2d 5 / 2 ) 4 (1g 7 / 2 ) 8 . 111Cd 3s1 / 2 , 2d 5 / 2 . 2d 5 / 2 . 112 Cd 64 ( 2d 5 / 2 ) 6 (1g 7 / 2 ) 8 , 2d 5 / 2 1g 7 / 2 N = 64 . Cd A > 114 11 / 2 - ( E (11 / 2 - ) < 300 ). Cd 3s1 / 2 , 2d 3 / 2 1h11 / 2 . .. 1h11 / 2 , 3s1 / 2 2d 3 / 2 , 1h11 / 2 , 3s1 / 2 2d 3 / 2 . 113-117 Cd 3s1 / 2 1h11 / 2 . 1h11 / 2 .
113 ,115 ,117

Cd

3s1

/2

,
113 ,115 ,117



Cd

J

p

= 1 / 2 + . 1h11

/2

23


, 114 ,116 ,118 Cd ( 2d 5 / 2 ) 6 (1g 7 / 2 ) 8 (1h11 / 2 ) 2 , ( 2d 5 / 2 ) 6 (1g 7 / 2 ) 8 (1h11 / 2 ) 4 ,
( 2d
5/2

) 6 (1g

7/2

) 8 (3s1 / 2 ) 2 (1h11 / 2 ) 4 . 2d

3/ 2





127 -130

Cd , 1h11 / 2 .

Te. 105Te - J p = (5 / 2) + , ( 2d 5 / 2 )1 (1g 7 / 2 ) 2 . Cd, 1g 7 / 2 . 5 / 2 + 7 / 2 + 100-150 , 105 ,109 ,111Te - J p = (5 / 2) + . 107 Te . Cd Te , 107 Te ( 2d 5 / 2 )1 (1g 7 / 2 ) 4 , .. - 107 Te J p = 5 / 2 + . 113,115Te 7 / 2 + , () 1g 7 / 2 . Cd, Te 2d 5 / 2 1g 7 / 2 64 . -
116

Te ( 2d

5/ 2

) 6 (1g

7/2

)8 .

117 Te 1 / 2 + , 3 / 2 + 11 / 2 - . 11 / 2 - . , Cd. 118,120 ,122 ,124Te 1 / 2 + . 117 ,119 ,121,123,125Te - J p = 1 / 2 + . 125 Te 6 8 1 8 ( 2d 5 / 2 ) (1g 7 / 2 ) (3s1 / 2 ) (1h11 / 2 ) . 11 / 2 - ( 2d 5 / 2 ) 6 (1g
130

Te . 2d Te . ) (3s1 / 2 ) 2 ( 2d
8 134 3/ 2

3/ 2

131-134 7/2

Te ) 4 (1h11 / 2 )12 ,

N = 50 - 82 . 135Te 2 f 7 / 2

N = 82 - 126 . J p = 7 / 2 - .

135 ,137 ,139

Te -

. . Sn. 111,115,117 ,119 Sn , 24


11 / 2 - . 9 11 / 2 - , , . 1h11 / 2 112 ,116 ,118,120 Sn 11 / 2 - 111,115,117 ,119 Sn , () . . () , . , 11 / 2 - . 9. E S 11 / 2 - , 112 ,116 ,118,120 Sn . E, S 112 111 Sn( p, d ) 978.6 0.82 Sn 116 Sn(d , t ) 1.6
115

Sn

713.64

2.03 0.65 3.1 3.26 3.61 4.4 3.5

116

Sn( 3He, ) Sn( p, d ) Sn( p, d ) Sn(d , t ) Sn(d , t ) Sn( p, d )

116 118

117

Sn

314.58

118 120

119

Sn

89.53

120 120

Sn( 3He, )



112

Sn 1h11

/2

, ~1

. 111 Sn 11 / 2 - . 1h11 / 2
Sn N. 11 / 2 - 3.5 - 4.4 119 Sn .
112 ,116 ,118 ,120

10 N 112 ,116 ,118,120 Sn 1g 7 / 2 , 2d 5 / 2 , 3s1 / 2 , 2d 3 / 2 , 1h11 / 2 , [12] . 10 [11], Sn , . N 1g 7 / 2 2d 5 / 2 , 116 Sn 3s1 / 2 , 2d
3/ 2

1h11 / 2 .

25


10. 1g
112 ,116 ,118 ,120

7/2

, 2d

5/2

, 3s1 / 2 , 2d .

3/ 2

, 1h11

/2



N 62 66 68 70


112 116 118 120

Sn Sn Sn Sn

Sn . N ­ 1g 7 / 2 2d 5 / 2 3s1 / 2 2d 3 / 2 5.52 4.50 0.36 0.64 7.20 5.10 0.94 1.08 7.44 5.04 1.30 1.48 7.60 5.28 1.04 2.12

1h11 / 2 1.20 2.04 2.76 5.16

1h11 / 2 . , [11]. , , N, 120 Sn , N = 50 - 82 21.1, ­ 20.0. 11. 1g 7 / 2 , 2d 5 / 2 3s1 / 2 , 1h11 / 2 , 2d 3 / 2 [12] [11]. 1g 7 / 2 2d 5 / 2 [11] [12] 112 12 10.2 Sn 116 14 12.3 Sn 118 14 12.48 Sn 120 14 12.88 Sn 3s1 / 2 , 1h11 / 2 , 2d 3 / 2 112 0 2.2 Sn 116 2 4.04 Sn 118 4 5.54 Sn 120 6 7.32 Sn . Cd, Sn Te : · Cd, Sn Te 2d 5 / 2 1g 7 / 2 1g 7 / 2 , 2d 5 / 2 . 3s1 / 2 2d 3 / 2 2d 3 / 2 , 3s1 / 2 . 2d 3 / 2 1h11 / 2 1h11 / 2 2d 3 / 2 . 26

·

·


, j (l ) j (l ) . 2d 5 / 2 1g 7 / 2 . , , 105 Cd J p = 5 / 2 + , ( 2d 5 / 2 ) 3 (1g 7 / 2 ) 4 ( 2d 5 / 2 ) 5 (1g 7 / 2 ) 2 . 105 Cd ( 2d 5 / 2 )1 (1g 7 / 2 ) 6 + (2d 5 / 2 ) 3 (1g 7 / 2 ) 4 + ( 2d 5 / 2 ) 5 (1g 7 / 2 ) 2 . , J 0 . 3s1 / 2 , 2d 3 / 2 1h11 / 2 .

27


:
1. .. , .. , .. . . : . ISBN 978-5-91304-122-72010 .: , 2010. 2. .. , . , 3, . . 1, 2012. 3. Bartlett , Phys. Rev. 41, 370 (1932); 42, 145 (1932). 4. W.Elsasser, J.Phys.rad.5, 549 (1933); Compt.Rend.199,1213(1934). 5. . . , Phys. Zeits. Sowietunion 2, 99 (1932). 6. M. Goeppert-Mayer. Phys. Rev. 75 (1949) 1464. 7. O.Haxell, J.Jensen, H.Suess. Phys. Rev. 75 (1949) 1766. 8. .-, .... . ., , 1958. 9. S.Raman, C.W.Nestor, Jr., P.Tikkanen. Transition Probability from the Ground to the FirstExcited 2{++} State of Even-Even Nuclides. At.Data Nucl.Data Tables 78, 1 (2001). 10. N.J.Stone. Table of nuclear magnetic dipole and electric quadrupole moments. At.Data Nucl.Data Tables 90, 75 (2005). 11. .. , .. , .. . Sn. 2009-7/851. 12. .. , .. , .. , .. , .. , .. , .. . , ., 69 1 (2005) 127-129. 13. .. , .. , .. , .. , .. , .. , .. , .. . , ., 69 5 (2005) 678681. 14. .. , .. , .. , .. , .. , .. , .. . , ., 69 1 (2005) 116-119. 15. O.Sorlin, M.-G. Porquet. Nuclear magic numbers: New features far from stability. Progress in Particle and Nuclear Physics 61 (2008). 16. A.Korgul, et al. Phys. Rev. C 64 (2001) 021302. 17. J.Shergur, et al., Phys. Rev. C 65 (2002) 034313. 18. L.Coraggio, A.Covello, A.Gargano, N.Itaco, Phys. Rev. C 72 (2005) 057302. 19. J.P. Schiffer et. al., Phys. Rev. Lett. 92 (2004) 162501.

28


.. ..

, Z=50

2012-2/880

15.06.12

29