Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://shamolin2.imec.msu.ru/zas203.htm
Дата изменения: Wed Oct 12 14:18:23 2011 Дата индексирования: Mon Oct 1 20:22:27 2012 Кодировка: Windows-1251 |
Заседание 203 (26 декабря 2008 г.)
Георгиевский Д. В.
Асимптотики решений трехмерных динамических уравнений Ламе для сжимаемых и несжимаемых тел.
Проведен анализ главных членов общих асимптотических разложений решений первой краевой задачи трехмерной динамической теории упругости в перемещениях. Отдельно рассмотрены принципиально различные в постановочном плане случаи сжимаемого и несжимаемого тела. Естественным малым асимптотическим параметром является отношение минимального характерного размера упругого тела к максимальному. При этом третий размер может иметь любой 'промежуточный', включая концы, порядок. Такой геометрией обладает, например, тело, одновременно имеющее характерные макро-, микро- и наноразмеры по трем осям координат.
Асимптотический анализ показал, что для существования и единственности главных членов асимптотик перемещений внутри области трехмерного тонкого тела необходимо, чтобы порядки (по малому геометрическому параметру) задаваемых на границе компонент перемещений были связаны друг с другом определенным образом. Для квазистатического приближения эта связь представлена графически. Выписаны точные решения систем главного приближения в перемещениях.