Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://shamolin2.imec.msu.ru/zas54.htm
Дата изменения: Wed Oct 12 14:18:28 2011 Дата индексирования: Mon Oct 1 19:54:15 2012 Кодировка: Windows-1251 |
Заседание 54 (14 сентября 2001 г.)
Шамаров Н. Н.
Методы нестандартного анализа в математической физике (часть II).
В качестве примера применения некоторых идей Н.А. к изучению свойств предельных циклов для траекторий векторных полей с двумя параметрами приведено "наивное" вычисление асимптотики зависимости параметров системы Ван-дер-Поля, при которой происходит коллапс цикла с эффектом "утки". Изложено построение нестандартного расширения "универсума математического анализа", удовлетворяющего требованиям аксиом "переноса" и "насыщенности". Приведены два применения этих аксиом - для доказательства существования бесконечного ("гипернатурального") числа в расширении натурального ряда и для вложения обычного бесконечномерного гильбертова пространства в пространство гипернатуральной размерности. Упомянут недавний результат докладчика о получении в - рамках Н.А. - обобщенных плотностей плотно дифференцируемых мер на бесконечномерных пространствах; стандартное определение таких "плотностей" (относительно несуществующей - по теореме Вейля - хорошей трансляционно инвариантной меры; кроме того, как правило, (всюду плотная) область определения обобщенных плотностей имеет меру нуль) мер таково: это функции, логарифмические производные которых совпадают на плотном подпространстве с логарифмической производной меры вдоль каждого вектора из (некоторого) плотного подпространства дифференцируемости меры.