Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://polly.phys.msu.ru/~polovnikov/course2.pdf
Äàòà èçìåíåíèÿ: Thu Nov 26 21:33:06 2015
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 00:36:08 2016
Êîäèðîâêà:
, . ..



« »
Vesicular structure in dilute solution of comblike macromolecules with stiff side chain groups

: . .-.., ..

21.04.2014



· · · · · : · · · · · · · · 2 2 4 9 12 15 19 20 21 22 23 30 31




­ , . , , . ­ . , . , , . : [1] [2]. , [3].

2


. 1.

, . . [4-5] , , . [6]. . . , . , .
3


, . , , [7-8], ( , , ) [9] , pH ( , pH , ) [10-11]. .


, : , , . [12, 13] , , . , -, .

4


. 2. -, [1].

­ . [14], [15]. . ( ) [15] «» 50 . , , ­ , .

5


. 3. . [15]

, . [16] (P2VP) . . , : - ( ), . .
6


. 4. P2VP [16]

[16] , , , , , , . , , . 5. - , . 6.

. 5. , [16] 7


, , , . , «» , . , , . , , .

. 6. , - [16].

8



. , .

[17, 18]. , [1921], .

. 6. [40]

, , . . , , ,
9
















, /D10 [22, 23]. («») . , . , [24, 25] [26] [27] , , ­ [28-35]. , , /D10 [36], , , . , , , . , [37, 38]. , . , ,
10





.






, «» «» . , , . , m > d, m ­ , d ­ , . , , m << d, , [39]. , .

. 7.

11


:

F
bb

( «» «»),

F

surf

, F
F
flip- flop

bil

,

,

, .
F = F bb + F +F +F

su rf

f -h

flip - flop

(1)



,






F
bil



,

.

, , . , . , , -- : , . , , , .

, . ,
12


. , , , 98-99% ­ . , - , . d. c , , , . . , , . , , , . , , . 8. , , ,
13



.



.

,












.

. 8. ,

m ; d ­ ; N ­ ; ­ , ; ­ , LC, Q ­ ;
R
1

, R2 ,

1 ,

2

­

, . 8. , , .
14


:
N Q m N 4 ( R1 +d )2= ( 1- )Q m 4 R1=
2

(2)

: Q

R

1

, Q ,


R
1

, ,

:
1 1 +( 1+
-1

=

d2 ) R1
2

(3)

Q= 4 (

N d 2 ) R1 [1 +( 1+ 2 ) ] m R1


, , «», «», . [39]. :
F v =B n bb
2

(4)

B ­ , n ­
15


. , : g . [40, 41], g 3 /5 a 2/ 5 B ,
1/ 5

. , , :
a = / g
1/ 2

, ,
3


=a g
1/ 2

B . , ,

kT.



B n g 1 ,

n= g /



. :
1 g2 1 F v = B n 2= = bb n g 6 3

(5)

, :
dV 3

F bb= F

crown

+F

core

=V

1

+V

2

(6)

:
2N 2 ( 1 - ) Q = 4 r m 2N Q 2=4 r 2 m

2

(7)

, :
16


F

crown

=R



2 2

2 N ( 1- ) Q 3/ 2 1 1 2 N ( 1 - ) Q 3 / 2 4 r dr [ ] = [ ] ln ( 2 ) 3 4m m R2 r 4
2

(8)

F

core

= 4 r 2 dr [
1 1

R

2N Q ] 4m

3/ 2

R 1 1 2 N Q 3/ 2 = [ ] ln ( 1 ) 3 1 m r 4

(9)

F bb= F

crown

+F

core

=



1 2N Q 3 [ ] 4 m

/2

[

( 1 - )3/ 2 ln (

2 ) + R2

3 /2

R ln

1 1

]

(10)

:

V V
2

dV = a N (1 - ) Q

3

dV =a N Q
1

3

(11)

V 1 , V

2

­ ; ­ ,

:
g a3 a 4 /3 = 4 /3 4 3

= n a 3=

/3

(12)

­ , B= a 3 . :
5 a 5 N ( 1 - ) Q m2 1 5 / 3= R 5 / 3+ [ ] 2 2 3 16 5 2 1/ 3 5 a N Q m R 5 / 3 = 5 / 3+ [ ] 1 1 3 16
/3

(13)

17


, , :
' 1 /3 F bb C (1- ) Q ' 1 /2 3/ 2 = A Q [ (1 - ) ln ( 1+ 5/ 3 Q R2 1 /3

)-

3/ 2

C Q ln (1- 5/ 3 R1

'

1 /3

1/ 3

)]

(14)

3 2 A' C' ­ : A' = 3 ( N ) 5 m



/2

52 1 , C '= 5 [ a m N ]

/3

3

16

.

, , :
R1>C Q
5 '3

(15)

, , . (3) Q :
3 F bb C = A R1 [ 2 ln ( 1+ Q 1+ R1

R

1



.

8 /3

)-

1 C ln ( 1 - )] 2 R1 1 +

(16)

53 1 2 =1 + d ; A= 6 N , C = 5 [ a m ] R1 5m 3 4



/3

­ .

18


:
R 1> C

(17)


. 8 , . , , :
F
1 surf

= 0 4 R

2 1

(18)
N m

F

2 surf

= 0 Q ( 1- )

(19)

Q (3), , :
N 2 ( 4 R1+Q ( 1 - ) ) 2 F surf R2 m N N 1 = 0 = 0 ( 4 1 +( 1- ) )= 0 ( + 2) Q Q Q m m 1+ 2 1+ F surf N = 0 Q m

(20) , .

19



, . , , . [42, 43]:
F
v f -h

=- +( 1 - )ln ( 1- )

2

(21)

­ -, ­ :
N Q d m 4 ( R 3 - R 3) 2 1 3

=

(22)

, , , . , . . , , , :
20


N N dQ dQ F f -h N Q m m =- ( d ) 3 + ( 1- 3 ) ln ( 1 - 3 ) Q m R 2- R 3 R 2- R 3 R 2- R 3 1 1 1
2

(23)

(3):
F f -h u ( R1 ) u ( R1) N 1 =- H u ( R 1)+ 2 d ( 1- ) ln ( 1- ) Q m 2 2 u ( R1)

(24)

u ( R1) = 1+
2+

2 2 2 1

d 3R

=1 + d .
R
1

- ,
2 0

[42]

H=

N N d 2 d 0 m m

(25)


. , , , , , , .

21


F

flip- flop

Q

= ln +( 1 - ) ln ( 1- )

(26)

R1 , (3), :
F
2 2 1 1 ln + 2 ln 2 2 1+ 1+ 1+ 1+

flip - flop

Q

=

2

(27)


3 F C = A R1 [ 2 ln ( 1 + Q 1 + R1

1 ln ( 1 - 8/ 3 1 + 2 u(R N - H u ( R1 )+ 2 d ( 1- m 2 )-

C 1 )]- ln R1 1+ 2 u ( R1) 1) ) ln ( 1- 2

2 2 1 + 2 ln 1+ 2 1 + 1 + 1 ) u ( R1)

2

(28) , C, H ­ , u ( R1) = 1+
2+
2 2 2 1

d 3R

, =1 + d .
R
1

, , , , : R1>C .

22



, , , . 9. , , , .
10
4

, (

). , , . , , (3). , Q10 6 , 0.49 , , . , 99%, -- - .

. 9. , ,

23


. , ­ . , , ,
2 0



0

( -

), d m.

, ( ), , . , , : kT, , . «» «» . , , , , . , . , ,
R1>C .

, . . 10.

24


. 10. «», «» , . ,

? , < 0.5. , . , , (3).

25


. 11.

10-50 . : , . , , , , . ­ « ». d . , . « » . , , d
26


. . , m, (28). , m, , . , . m ( ), , . [16], . . 11 , , , . , , . m , . , - , m , (. 12).

27


. 12.

, , . , , , . , , , . 14. -, , . 13. , , , « ». .

28


. 13. .

. 14.

29





. , [16]. , , , . , . ( ). , . , , ­ , . , m >> d, , . , m d, , : ,
30


. , , , m >> d , . , , , , . , , . .


1. J.P. Jain et al., Self Assembling Polymers as Polymersomes for Drug Delivery. Current Pharmaceutical Design, 2011; pp. 1381-6128. 2. M. Sauer and Wolfgang Meier, Responsive nanocapsules. Chem. Comm., 2001; pp. 55-56. 3. D. D. Lasic, Liposomes: Synthetic lipid microspheres serve as multipurpose vesicles for the delivery of drugs, genetic materials and cosmetics. Am. Scientist, 1992; pp. 250-257. 4. Lasic D.D., Templeton N.S., Liposomes in gene therapy. Adv. Drug. Deliv. Rev. 1996; 20: pp. 221­266. 5. Ropert C., Liposomes as a gene delivery system. Braz. J. Med. Biol.
31


Res. 1999; 32 (2): pp. 163­169. 6. Vasir J.K., Reddy M.K., Labhasetwar V.D., Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience. 2005; pp. 47­64. 7. Ponce A.M. et al., Targeted bioavailability of drugs by triggered release from liposomes. Future Lipidol. 2006; pp. 25­34. 8. Kong G., Dewhirst M.W., Hyperthermia and liposomes. Int. J. Hypertherm., 15, 1999; pp. 345­370. 9. Bisby R.H., Mead C., Morgan C.G., Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology, 72, 2000; pp. 57­61. 10. Duzgunes N. et al., Intracellular delivery of therapeutic oligonucleotides in pH sensitive and cationic liposomes. In: G. Gregoriadis eds. Liposome technology. 3rd ed. Vol. III. Interactions of liposomes with the biological milieu. New York: Informa Healthcare USA, Inc. 2007. pp. 253­275. 11. .. , . « », , 2012 /3; c. 23-30. 12. Meng, F. et al., Biodegradable Polymersomes. Macromolecules, 2003, 36 (9); pp. 3004-3006. 13. Wolfgang M. et al., Block copolymer vesicles--using concepts from
32


polymer chemistry to mimic biomembranes. Polymer, 46, 2005; pp. 3540­3563. 14. Y. Zhou et al., Self-Assembly of Hyperbranched Polymers and Its Biomedical Applications. Advanced Matter, 22, 2010; pp. 4567 ­ 4590. 15. V. Percec et al., Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures. Science, 2010; pp. 1009 ­ 1014. 16. M. Moller et al., Light-Switchable Vesicles from Liquid-Crystalline Homopolymer­Surfactant Complexes Angewandte. Chem. Int. Ed., 51, 2012; pp. 11616 ­11619. 17. M. Moller et al, Single Molecule Rod-Globule Phase Transition for Brush Molecules at a Flat Interface. Macromolecules, 34, 2001; pp. 8354­8360. 18. I.Potemkin et al., Block Copolymer Based Molecular Motor. Macromol. Rapid Commun., 28, 2007; pp. 977-980. 19. Iozzo RV, Series Introduction: Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest., 108(2), 2001; pp. 165­167. 20. Varki A et al., Naturally occurring disorders of glycosylation. In Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999; pp. 479-498. 21. Muir H. et al., The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochem Soc Trans, 11, 1983; pp. 613­622.
33


22. L. Onsager, THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES. Annals of the New York Academy of Science, 51, 1949; pp. 627-659. 23. A. Khokhlov and A. N. Semenov, Liquid-crystalline ordering in the solution of partially flexible macromolecules. Physica A: Statistical Mechanics and its Applications, 108, 1981; pp. 605-614. 24. L. V. Gallacher and S. Windwer, Monte Carlo Study of Flexible Branched Macromolecules. J. Chem. Phys. 44, 1966; p.1139. 25. S. Ya. Magarik, G. M. Pavlov, and G. A. Fomin, Hydrodynamic and Optical Properties of Homologous Series of Styrene-Methyl Methacrylate Graft Copolymers. Macromolecules, 11, 1978; pp. 294-300. 26. F. L. McCrackin and J. Mazur, Configuration properties of comb-branched polymers. Macromolecules 14, 1981; pp. 1214-1220. 27. P. G. De Gennes, Scaling Concepts in Polymer Physics. Cornell Univ. Press, Ithaca, 1979; Mir, Moscow, 1982. 28. T. M. Birshtein, O. V. Borisov, E. B. Zhulina, et al., Modern Problems of Physical Chemistry of Solutions. Vysokomol. Soedin., Ser. A 29, 1987; p. 1169. 29. E. B. Zhulina, Theory of steric stabilization of colloid dispersions by grafted polymers. Journal of Colloid and Interface Science, 1990; pp. 495-511. 30. G. H. Fredrickson, Surfactant-induced lyotropic behavior of flexible
34


polymer solutions. Macromolecules 26, 1993; pp. 2825-2831. 31. Z.Huang et al., Inverse Bicontinuous Cubic Phases in 2:1 Fatty Acid/Phosphatidylcholine Mixtures. The Effects of Chain Length, Hydration, and Temperature, J. Phys. Chem. B, 102 (37), 1998; pp. 7251­7261. 32. J. E. G. Lipson, A Monte Carlo simulation study on long-chain combs. Macromolecules, 24, 1991; pp. 1327-1333. 33. J. E. G. Lipson, Statistical and metric properties of long-chain combs. Macromolecules, 26, 1993; pp. 203-207. 34. A. Gauger and T. Pakula, Static Properties of Noninteracting Comb Polymers in Dense and Dilute Media. A Monte Carlo Study. Macromolecules, 28, 1995; pp. 190-196. 35. Y. Rouault and O. V. Borisov, Comb-Branched Polymers: Monte Carlo Simulation and Scaling. Macromolecules, 29, 1996; pp. 2605-2611. 36. M. Saariaho, I. Szleifer, O. Ikkala, and G. Ten Brinke, Extended conformations of isolated molecular bottle-brushes: Influence of side-chain topology. Macromol. Theory Simul. 7, 1998; pp. 211-216; 37.Saariaho M, Subbotin A, Effect of Side Chain Rigidity on the Elasticity of Comb Copolymer Cylindrical Brushes: A Monte Carlo Simulation Study. Macromolecules, 32, 1999; pp. 4439­4443. 38. Subbotin A, Saariaho M, O. Ikkala and G. Ten Brinke, Elasticity of Comb Copolymer Cylindrical Brushes. Macromolecules, 33, 2000; pp. 6168­6173.
35


39. Vladimir V. Palyulin and Igor I. Potemkin, Mixed versus Ordinary Micelles in the Dilute Solution of AB and BC Diblock Copolymers. Macromolecules, 41, 2008; pp. 4459-4463. 40. De Gennes, P. G., Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979. 41. Grosberg, A. Yu.; Khokhlov, A. R. Statistical Physics of Macromolecules; AIP Press: New York, 1994. 42. A. N. Semenov and S. V. Vasilenko, Sov. Phys. JETP 63 (I), 1986; pp. 124140. 43. P. J. Flory, Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York, 1971.

36