Документ взят из кэша поисковой машины. Адрес оригинального документа : http://polly.phys.msu.ru/~baskin/cv.html
Дата изменения: Unknown
Дата индексирования: Thu Feb 27 23:13:07 2014
Кодировка:
cv.html

Curriculum Vitae

Name: Igor I. Baskin

Personal data: Date and Place of Birth: October 31, 1961, USSR, Gomel

Education and grades:

Applications and positions:

Publications: 139 research articles and book chapters

Citations: 1008 (Web of Science), 1505 (Google Scholar); H-index: 19 (Web of Science), 22 (Google Scholar)

Scientific interests:

Selected publications:

  1.  Baskin, I.I.; Zhokhova, N.I. The continuous molecular fields approach to building 3D-QSAR models. J. Comput. Aided Mol. Des., 2013, Vol. 27, No. 5, pp. 427-442.
  2. Varnek, A.; Baskin, I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis? . J. Chem. Inf. Model. 2012, Vol. 52, No. 6, pp. 1413-1437
  3. Kireeva, N.; Baskin, I.I.; Gaspar, H.A.;  Horvath, D.; Marcou, G.; Varnek, A. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison. Mol. Inf., 2012,  Vol. 31, pp. 301-312
  4. Varnek, A.; Baskin, I. Chemoinformatics as a Theoretical Chemistry Discipline. Mol. Inf., 2011, Vol. 30, pp. 20-32
  5. Baskin, I.; Kireeva, N.; Varnek, A. The One-Class Classification Approach to Data Description and to Models Applicability Domain. Mol. Inf., 2010, Vol. 29, Iss. 8-9, pp. 581-587
  6. Varnek, A.; Gaudin, C.; Marcou, G.; Baskin, I.. Pandey, A.K.; Tetko I.V. Inductive Transfer of Knowledge: Application of Multi-Task Learning and Feature Net Approaches to Model Tissue-Air Partition Coefficients. J. Chem. Inf. Model., 2009, Vol. 49, No. 1, pp. 133-144
  7. Baskin I.I., Varnek A. Chapter 1. Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening. // In: Chemoinformatics Approaches to Virtual Screening / Varnek A., Tropsha A., Ed. – RCS Publishing. - 2008. – P. 1-43
  8. Baskin I.I., Palyulin V.A., Zefirov N.S. Chapter 8. Neural Networks in Building QSAR Models // In: Artificial Neural Networks: Methods and Protocols / Livingstone D.S., Ed. – Humana Press, a part of Springer Science + Business Media, 2008. – P. 139-160
  9. Varnek, A.; Kireeva, N.; Tetko, I.V.; Baskin, I.I.; Solov’ev, V.P. Exhaustive QSPR Studies of Large Diverse Set of Ionic Liquids: How Accurately Can We Predict Melting Points? J. Chem. Inf. Model., 2007, V. 47, No. 3, pp. 1111-1122
  10. Ivanov, A.A.; Baskin, I.I.; Palyulin, V.A.; Piccagli, L.; Baraldi, P.G.; Zefirov N.S. Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonists J. Med. Chem., 2005, Vol. 48, No. 22, p. 6813-6820
  11. Baskin, I.I.; Tikhonova, I.G.; Palyulin, V.A.; Zefirov, N.S. Selectivity Fields. Comparative Molecular Field Analysis (CoMFA) of the Glycine/NMDA and AMPA Receptors. J. Med. Chem., 2003, Vol. 46, No. 19, pp. 4063-4069