Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://lnfm1.sai.msu.ru/~rastor/Study/Nagirner-relict.pdf
Äàòà èçìåíåíèÿ: Mon Feb 2 16:41:49 2009
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 23:02:34 2012
Êîäèðîâêà:
. .


Cosmic microwave background radiation ( CMB, CMBR, CBR) -, () - ( . . ), . , , , , , . , , . . 4000 , , ( , ), . z 1500 Â 1000. , . , , , , . , , , , . , . , , , [5, 66, 65], [71, 92, 47, 58, 46]. [10] [13]. () . , , , , , . . § 1. () 1. . serendipitously. , , . - , , , , "" . , , - , . 1964 - "Crawford Hill Laboratory" (Holmdel ) 20 ( 21 ). . . ECHO, 100 , . , , , . , 12.5 , . , . . , ECHO [64], , . . , , , . [66]. , , -, . , 6 . 7.35 , , (). : 3.5 ± 1 .

1


. : , , , . , . , . , , . . , . , . : 1) , 2) , 3) 4) . , . - . , , . ( -, , - , - -), 30 , , = 3 . . , . . , . . MIT Radiation Laboratory ( ). , . CMBR 20 . 1964 , . . . . . . . , . . . : [68] [31] Astrophysical Journal. 3.2 , 3.0 ± 0.5 . 1972 15 0.27 73.5 . 1975 0.1 , . . 1978 . 2. . , , , . , , , , , . . , . 1941 . [17] CN , , , , 2.6 . - [57] , , 2.3 . - . . , ´ . , , . 1966 ( . [5]). 3.2 . . , . . . . , " " [16]. , . . 2004 . 2


. . [8, . 152­153] . ", 3.7 ± 3.7 , 3.9 ± 4.2 . , . . ( 4 ) , , , 2 . , . . , -, . . . , 1957 . . . . , , . . . . , . . . . . , . . ." , . . . . [4] , , . , , . . , , , , . 2.3 ± 1 , , 1 1 . , 1 . , . . . . [5] , . . . : " , , (. . ), (. . . . ) ." 3. . . , . . 1999 COBE (COsmic Background Explorer) T0 = 2.7277 ± 0.002 ( 95 % ) . max = 1.604 · 1011 1/, 1.870 . , , max = 1.062 , ( max ) 2.822 · 1011 1/. , , 1/2 = 1.9910 · 1011 1/ 1/2 = c/1/2 = 1.506 . 8 2.404(T 0kB /ch)3 = 411.7 1/3, 4 () (8 5 kB /15h3 c3 )T0 = -13 3 3 -34 3 4.188 · 10 / ( 0.25 / ), 4.659 · 10 / . 2.047 · 10-13 /( 2 ). , [5], , , . . . 1. () (< 1 ) (< 1 ) (1 Â 6 ) (> 10 ) , /3 10
-7

, 1/3 1 400 1 10-3 3 · 10
-8

0.25 10-2 3 · 10-3 10
-5

 10
-4 -5 -5

-4

 10
-9

-8

10

3 · 10

10 < 10

3 · 10 < 10

-12

-12

3


, , . , [30, 86], v T = T0 1 + cos 10-3 . c 3.343 ± 0.016 = 11.2h, = -7 l = (264.4 ± 0.3) , b = (48.4 ± 0.5) . , , 627 ± 22 / l = (276 ± 3) , b = (30 ± 3) . , , . 10-5 , T = (12.4 ± 2.8) . . .. .. [90] (. [82]). , - ( , ), . . . , , . § 2. 1. . , . . , , . , . 4000 Â 2700 ( 105 ), z 1500 Â 1000, , , . . , , . , , . , z 103 , . . , : T = T /T . . (., , [65]). , . . 10 -44 , . "" [20]. (. [5, 12, 65]). 1) ( , 1967). . -, , , T = /c2 . -, , . . t/t = /c 2 . , , R t2/3 . T 1/R t-2/3 , T = -(2/3)/c2 . : T = (1/3)/c2 . 2) , . . ni n . ( ) : n 1/R3 , ni 1/R3 , -: i 1/R3 T 3 , r 1/R4 T 4 . T = (1/3)/ = (1/4)r /r . 3) S , . , . T 3 , T = (1/3)S/S . 4) , , . T vr /c, vr , . . . 4


, , , . . . [14] . . , , . - g i j . e 1 T (e) = - 2
t
0

t

1 r v gi j i j e e dt + +e . t 4 r c

(1)

r

ei e, e0 = 0, tr , t0 . , [52]. 2. . , . : . ( 1 ) . 0 . , , "" "". "" = (x , y ). , , . . T () = T (). : 1 ~ T (K ) = 2 0 e
2 2 x +y 0

iK 2

1 ~ d T () = T (K ) = 2 0

2



0

d
0 0

de

i K cos

2 T () = 2 0



0

dT ()J0 (K ),
0

(2)

J0 (z )


2

1 J (z ) = 2

e
0

iz cos -i

d.

(3)

, , K .
2 0 T () = (2 )

2

e

-iK

~ T (K )d2 K = () =

2 0 (2 )

2 2 0



d
0

e

-iK cos

2 ~ T (K )K dK = 0 2



~ J0 (K )T (K )K dK. (4)
0

~ T (K ) , > 0 . 1 ~ eiK T ()d2 , (5) T (K ) = 2 0 . , (4) . . 0 : T = 1. (. [1, 6.561.5.]) 2 ~ T (K ) = 2 0

0

J0 (K )d =
0

2 J1 (K 0 ). K 0

(6)

5


6.512.3. [1] 2 T () = 2 0
2 0

0

. . ( ). 2 2 ~ T 2 (K ) = 0 K 2 T (K ) , (8) 2 . ,
C () = T ()T ( + ) =

1 1 J0 (K )J1 (K 0 )dK = 2 0

< 0 , = 0 , > 0 , (7)

1 2 0

d2 T ()T ( + ).

(9)

. , C () =
4 1 0 2 (2 ) 0 1 4 = 2 04 0 (2 ) 4

d2

e

-iK

~ T (K )d2 K
iK ~ T

e

iK (+) ~ T

(K )d2 K =

~ T (K )d2 K ~ T (K ) d2 K =
2

e

(K )d2 K (2 )2 (K - K ) =

0

=

2 0 (2 )

2

e

iK

2 0 (2 )

2 2 0

d
0
0

e

iK cos

~ T (K ) K dK = dK . K

2

=

2 0 2



0

~ T (K ) J0 (K )K dK =
0 0

2

T 2 (K )J0 (K )

(10)

3. . : T (n) =
l, m

a

l m Yl m

(, ),

(11)

n . C (µ) = T (n1 )T (n2 ) = 1 (4 )
2

d2 n

1

d2 n2 T (n1 )T (n2 )2 (n1 n2 - µ), lm

(12)

µ = n1 n2 , a C (µ) = 1 4
l

: |2 . (13)

a2 Pl (µ), l
l

a2 = l
m=-l

|a

lm

, (12) -


(µ - µ) =

l=0

2l + 1 Pl (µ)Pl (µ ) 2

(14)

(11), ( ). C (µ) = â 1 16 a
l2 , m
2

2 l=0
2

(2l + 1)Pl (µ) Y
l2 m
2

d2 n

1

d2 n

2 l1 , m
1

a

l1 m

1

Y

l1 , m

1

(1 , 1 )â (15)

l2 m

(2 , 2 )Pl (cos 1 cos 2 + sin 1 sin 2 cos(1 - 2 )). 6


, Pl (cos 1 cos 2 + sin 1 sin 2 cos(1 - 2 )) = 4 2l + 1
l

Y
m=-l

lm

(1 , 1 )Y

lm

(2 , 2 ).

(16)

, (15) (13). , . , , , . . Cl = |a
lm

|

2

=

1 |al |2 . 2l + 1

(17)

, ´ l. = 2 /l. 4. . Cl . , Cl , T2= l(l + 1)Cl , 2 T= l(l + 1)Cl . 2 (18)

l(l + 1) , l(l + 1)C l , . , l (18) (8). . 1 . l 1, 1, l + 2 w = Pl (cos ) d2 w cos dw + + l(l + 1)w = 0 (19) d2 sin d y = (2l + 1) sin : 2 1- y2 (2l + 1)
2

y2 d2 w + 1-3 dy 2 (2l + 1)

2

1 1 dw + 1- y dy (2l + 1)

2

w = 0.

(20)

l , . = 0 Pl (1) = 1, Pl (1 - 2 /2) = J0 ((l + 1/2)). 1 , l K = l + 1/2. C (cos ) = C 1 - 2 2 = 1 4 1 2
2 al P l=0 l

1-

2 2



1 4

a2 J0 ((l + 1/2))dl = l

1 4

(2l + 1)Cl J0 ((l + 1/2))dl = dK , K (21)

=

T2 (2l + 1)J0 ((l + 1/2))dl = l(l + 1)

T 2 (K )J0 (K )

(10) . , (20) , Pl (1 - 2 /2) 1/(l + 1/2)2 . , , , (18) l. Cl = 2 6 T2= C2 . l(l + 1) l(l + 1) (22)

C (µ) = 3C2 2


l=1

3C2 2l + 1 Pl (µ) = l(l + 1) 2



l=1

1 Pl (µ) + l



l=0

1 Pl (µ) . l+1

(23)

7


l. , 8.926.1. 8.926.2. [1]. , µ = -1 µ = 1: 2 3 C2 ln . (24) C (µ) = 2 1-µ

T , l 10. , T 2 T lg l, l. , l. . T 2 = l(l + 1)Cl /2 200­300, . . 5. . . . , , . . T (n) T (r ), . , . . T (n) = T (r)e
-

d .

(25)

r , : e (25)
-

d = W (r)dr.

(26)

T (n) =
0

T (r)W (r)dr.

(27)

. z < 10 Â 25 , . , . , . rrec , . , W (r) = ((r -r rec )/r ), , . . 2 2 1 e-(r-rrec ) /(2r ) . (28) W (r) = 2 r (., , [65]) r = 10 , r r(z ) = 2 c z . H0 1 + z ( 1 + z + 1)
rec

= r(z

rec

), (29)

, z = , . . r(zrec ) r() = 2c/H0 = 3 · 1028 = 104 . r. (26) , r = 0 = 0, :
r

1-e

-

=
0

W (r )dr .

(30)

, 1-e
-

1 = 2

r

e
r 0

-(r-r

rec

2 )2 /(2r )

dr =

r - rrec + r

rrec r

,

(31)

8


(x) . 1 . (32) = ln 1 - [((r - rrec )/r ) + (rrec /r )] . , . , ( ), § 4, ( ) [27]. . , , [2], [34, 24], LiH. , 10-8 Â 10-6 , .

.

..... ...
LiH

k B Te n e , v

r



v

S

1. . . 1 , , , ( [65]). , , , . , . 6. . . . T < 10 %. : 10-2 [78] 10-3 [84]. [11]. T 2 · 10-5 Â 10-4 [67, 3 ]. 1992 DMR (Differential Microwave Radiometer), COBE (COsmic Background Explorer). , T 30 > 7 . , , . 1994 [92] , . 1 T 10-5 . , 50 . , 1992 , , Monthly Notices. , 3, COBE, . 3 2006 , COBE, . George F.Smoot, [87], John C.Mather, , FIRAS (Far InfraRed Anisotropy Searches), [40]. . ( SP, Python, White Dish, Tenerife ., . , [77]) ( DASI, CAT, VSA, Jodrel Bank). : MAXIMA (Millimeter Anisotropy Experiment Imaging Array), TopHat . BOOMERang (Balloon Observations of Millimetric Extragalactic Radiation

9


and Geophysics) 10 . , , . , L2 , , MAP (Microwave Anisotropy Probe), 5 22 90 . 1 . , . WMAP. WMAP , . 2007 Planck. 9 20 800 , 1000 , COBE, 4 . [37]. . 2 T ( (18)) l. . 2, , : b = 0.02, CDM = 0.28 = 0.7. . 2, b = 0.05 , . CDM = 0.95 = 0, CDM = 0.35 = 0.60. , . : COBE [21], MAXIMA-1 [53], BOOMERANG [61], DASI (Degree Angular Scale Interferometer) [42], Tenerife [77]. .
30 25 20 15 10 5 0 0 200
COBE MAXIMA-1 BOOMERANG DASI

T



30 25 20 15 10 5 0 0 200

T



COBE Tenerife BOOMERANG MAXIMA-1

400

600

800 1000

400

600

800 1000

l l . 2. T l 2000­2001 [37] () [77] (). , , , - . [33,51,58]. , . [92, 71]. R. Durrer [35­37] , . [83] , . 2001 [58]. WMAP [22], , COBE. , http://map.gsfc.nasa.gov, . [88], , 10 , 6 , , , 4 . , . 10


T 2 l [43]. , [23]. - [79, 80]. § 3. 1. . . , , . . . [69]. 10%, 10-4 % , . DASI. , . , , WMAP [50]. . , , , . astro-ph , WMAP. , 0606511 , ( Q) . 0603450 WMAP. Plank . . 2. . , Q U . , , , : Q U ^ = (Ai,j ). (33) A= U -Q , ^ det(A) = -(Q2 + U 2 ) (34)

^ A. , . , , Q 2 + U 2 > 0. x p= I . r , r= I Q2 + U 2 , tg 2 = U , Q (35)

3. . , . , . , : dy = tg . dx tg = dy = dx Q2 + U 2 - Q . U (38) 1 + tg2 2 - 1 , tg 2 (37) (36)

4. . (38) , . , , 11


Q U . ( ) Q = q x x + q y y , U = u x x + uy y . (39)

uy Q - q y U ux Q - q x U , y=- , d = q x uy - q y ux . (40) d d u q , , uy = 0. uy = 0, ux = 0 x y . d = 0 , . p, I , . . r, : Q = r cos 2, U = r sin 2. (41) x= dQ = dr cos 2 - 2r sin 2d, dU = dr sin 2 + 2r cos 2d. (36) dy ux dQ - qx dU ux (dr cos 2 - 2r sin 2d) - qx (dr sin 2 + 2r cos 2d) =- = tg = - . dx uy dQ - qy dU uy (dr cos 2 - 2r sin 2d) - qy (dr sin 2 + 2r cos 2d) tg = t (43) , d ln r 2 qy t3 + (qx - 2uy )t2 - (qy + 2ux)t - qx N (t) = = . dt 1 + t2 uy t3 + (ux + 2qy )t2 - (uy - 2qx )t - ux D(t) 2 [qy t3 + (qx - 2uy )t2 - (qy + 2ux )t - qx ], uy ux ux + 2qy 2 uy - 2qx t- t- . D(t) = (1 + t2 ) t3 + uy uy uy N (t) = (45) (46) (44) (43) (42)

(44), ±i, . t1 , t2 , t3 . D(t) = (1 + t2 )(t - t1 )(t - t2 )(t - t3 ). (47)

5. . (44) , : N (t) 2t 1 2 3 = + + + . D(t) 1 + t2 t - t1 t - t2 t - t3 , , 1 = - (1 + t2 ) (1 + t2 ) (1 + t2 ) 1 2 3 (1 + t2 t3 ), 2 = - (1 + t1 t3 ), 3 = - (1 + t1 t2 ). (t1 - t2 )(t1 - t3 ) (t2 - t1 )(t2 - t3 ) (t3 - t1 )(t3 - t2 ) uy uy (1 + t1 t2 + t2 t3 + t3 t1 ), qy = - (t1 + t2 + t3 + t1 t2 t3 ); 2 2 (49) (48)

: (44) ux = u y t 1 t 2 t 3 , q x = N (t) = -(t1 + t2 + t3 + t1 t2 t3 )t3 + (t1 t2 + t2 t3 + t3 t1 - 3)t2 + (t1 + t2 + t3 - 3t1 t2 t3 )t - (t1 t2 + t2 t3 + t3 t1 + 1); (40) d = q x uy - q y ux = u2 y (1 + t1 t2 )(1 + t2 t3 )(1 + t3 t1 ). 2 12 (52) (51) (50)


, 1 + 2 + 3 = -2, t1 1 + t2 2 + t3 3 = -(t1 + t2 + t3 ) - t1 t2 t3 = 2 1 2 3 = (1 + t2 )(1 + t2 )(1 + t2 ) 3 1 2 (1 + t1 t2 )(1 + t2 t3 )(1 + t3 t1 ). (t1 - t2 )2 (t2 - t3 )2 (t3 - t1 )2 (54) qy . uy (53)

(48) (44) :
3

r = r0 (1 + t2 )
j =1

|t - tj |j .

(55)

: r0 r= cos2
3 j =1

| tg - tg j |j .

(56)

, , , = ± /2, , (53). 6. . (56) Q U . 0 2 . = . 2 , xy . x = cos , y = sin (57) r , (39) : r cos = qx cos + qy sin , r sin = ux cos + uy sin . = r |d| = tg = qx tg - ux , uy - qy tg tg = ux + uy tg . qx tg + qy (60)
2 2 ((u2 + u2 ) cos2 + (qx + qy ) sin2 - 2(ux qx + uy qy ) cos sin = x y

(58)

r
2 2 (qx + u2 ) cos2 + (qy + u2 ) sin2 + 2(qx qy + ux uy ) cos sin x y

(59)

, , , . , . 7. . . , tj . : t1 > t2 > t3 . 2 3 1 < 0, > 0, < 0, (61) 1 + t 2 t3 1 + t 3 t1 1 + t 1 t2 . . 2 1 + t3 t1 , 1 3 1 + t2 t3 1 + t1 t2 . . 1) 0 < t3 < t2 < t1 . (54) j , d > 0. (1 2 3 ) (- + -). 13


2) t3 < 0 < t2 < t1 . 1 + t1 t2 > 0 3 > 0. : ) 1 + t3 t1 > 0, 1 + t3 t2 > 0, d > 0 (- + -); ) 1 + t3 t1 < 0, 1 + t3 t2 > 0, d < 0 (- - -); ) 1 + t3 t1 < 0, 1 + t3 t2 < 0, d > 0 (+ - -).

3) t3 < t2 < 0 < t1 . 1 + t2 t3 > 0 1 < 0. : ) 1 + t1 t3 > 0 1 + t1 t2 > 0, d > 0 (- + -); ) 1 + t1 t3 < 0, 1 + t1 t2 > 0, d < 0, (- - -); ) 1 + t1 t3 < 0, 1 + t1 t2 < 0, d > 0 (- - +). 4) t3 < t2 < t1 < 0. , d > 0 (- + -). , d , , . , -. , , . . . , t1 = c, t2 = a + bi, t3 = a - bi, : : 1 + a 2 + b2 < 0, (62) 1 = -(1 + c2 ) (a - c)2 + b2 - , 2 + 3 1 (a2 + b2 - 1)(c2 - 1) + 4ac = , 2 2 (a - c)2 + b2 2 - 3 c[(a2 + b2 )2 - 1] - a(c2 - 1)(a2 + b2 + 1) M = -b = . i (a - c)2 + b2 R= (63) (64)

(44) r = r0 (t - t1 )1 (1 + t2 )[(t - a)2 + b2 ]R e (t) = b 1 arctg . b t-a
-M (t)

,

(65)

(66)

(65) , . , M , . . . [32], (. [10]), , . d < 0 "" (saddle) -. d > 0 "" (beak). , "" (cometa). , , , , . . 1) "" : ) y = y0 x2 , ) y = (y0 +ln |x|)x, ) y = y0 x. 2) "" : y = y0 /x. 3) "": r = r0 e . 4) "": r = r0 . . 3 . 8. . (39), Q = 2q q x, U = y , q = 0. D(t) = (1 + t2 ) t(t2 + 2q - 1), t1 = 0, 1 = , 1 - 2q 1-q . , q < 0 "", 0 < q < 1/2 "", 2 = 3 = - 1 - 2q q > 1/2 "". . q . r0 2 . 1) "" q = -1, t2 = 3, t3 = - 3, 1 = 2 = 3 = - , r = 3 | sin /2(sin2 /2 - 3 cos2 /2)|2/3 2) "" q = 1, t2 = i, t3 = -i. 1 = -2, r0 2 = 3 = 0 r = . 2 sin /2 14














. 3. : , "", "", "", "".

15



20


40

10

20 0 -20 -40

0

-10

-20 -20

-10

0

10

20

-10

0

10

20

30

40

50

. 4. "" () "" ().
100



40 20 0 -20 -40 -40 -20 0 20
-100 -200 -150 -100 -50 0 50 100 150 200 50

0

-50

. 5. "" , r () , () .
40
50 40



20

30 20

0

10 0

-20

-10 -20

-40 -20

0

20

40

60

80

100

-30 -20

-10

0

10

20

. 6. "" () "" () .

16


. 4 . 5, , r. , . 4 , r , . "". . 5, , , . 5,. , . "" , , r0 , , , , . . . 9. . , (46) Q U . q = 0. r = r 0 /| cos(/2)|, , y . q = 1/2 . D(t) = (1 + t2 )t3 , N (t) = -3t2 - 1 r= r0 e sin (/2)
2
1 2

1 3 | sin /2| 1 3) "" q = 1/4, t2 = , t3 = - , 1 = 1, 2 = 3 = - r = r0 1 2 | sin2 /2 - 2 cos2 /2| 2 2

3/2

.

ctg(/2)

.

(67)

: , , , , 2 . "" (plough). . 6. "" , "" . ^ ^ 10. A. A , [10]. . . , : S= A xi xj
i,j

, , - () . "" (meteor). Q = (x - y )/2, U = y . D(t) = (1 + t 2 )t2 (t - 1), N (t) = -(t3 + 3t2 - t + 1), r0 e- ctg(/2) . (68) r= [cos(/2) - sin(/2)]2

=

2 2 -2 x2 y

Q+2

2 U. x y

(69)

P= . ^ 11. A [10]. : (Ai,j ) = 2 - i,j + i,k + j,k , (71) xi xj xk xj xk xi , i,k . i,k 1,1 = 2,2 = 0, 1,2 = -2,1 = 1. = ^ 01 -1 0 . (72)
k,j

A xk xi

i,j

=

2 2 -2 x2 y

U -2

2 Q x y

(70)

(71) : ^ A = (2


- ^ + ( 1) ^ 17



-



), ^

(73)




-, Q=



. U =2 2 2 2 - - . x y x2 y2 (74)

2 2 2 - +2 , 2 2 x y x y

S P S = 2 , P = 2 , (75) , . E -, B -. . § 4. 1. . , . . . . 1969 [95], , . , , [89, 7, 25, 73]. , . . : , , . , 3 · 10 14 1015 M . (1 = 3.086 · 1024 ) . . Te 108 . , , , . .
cc

( ) = n

2 e

k B Te 32 2 Z 2 e6 3 3 c3 (2 mkB Te )

g 3/2 cc

( ) exp(-xe ),

(76) (77)

xe = h /kB Te . , .
cc

=
0

cc

( )d = n

2 e

(kB Te )2 32 2 Z 2 e6 3 3 c3 h(2 mkB Te )

g 3/2 cc

.

(78) , (79)

(78) g 4
cc

cc

= 1.42 · 10

-27

Z2 T

1/2

n

2 e

. 3

, - 7 , . ( Z = 26) 13.6Z 2 = 9.0 , L , , (3/4)9.0 = 6.8 . , , , () : k B Te GM mp M 7 . 2Reff 3 · 1014 M Reff (80)


, 1 = 1.60207 · 10-9 11.6 · 106 (7 8 · 107 ) 12 A (7 1.8 A). . 18


ne , , 10-3 Â10-2 1/3. Mgas = mp ne (4 /3)(3 · 1024)3 = 1014 Â 1015M , (1/3 Â 1/4) . , . , , , (76) (78). , -3/2 -3/2 9 re ye 1 ye 1 = , (81) tCoul = 6 3 2 ne cT ln 4 2 c ln ne re 3 ye 8 2 e2 = . T = re = 6.65 · 10-25 2 , re = = 2.818 · 10-13 3 3 mc2 4 n e re mc2 , ye = . tCoul = 1013 Â 1015 . k B Te 1017 . , . § 1, , 1 2h 3 (82) I0 = B (Tr ) = 2 h /k T B r -1 ce Tr = T0 = 2.7277 , ( ) 1.87 . , , , , . , ´ . , . . 2. . ( ) ( [9]). k p. k1 p1 . ck , cp0 , ck1 , cp0 1 . p0 = m 2 c2 + p 2 , p
01 -3/2

=

m 2 c2 + p 2 . 1

(83)

p0 + k = p
01

+ k1 ,

p + k = p 1 + k1 .

(84)

, : p0 + k - k 1 = m2 c2 + (p + k - k1 )2 . (85)

, k p 0 - k p = k 1 p0 - k1 p + k k 1 - k k1 . (86)

k k1 , k p, k1 p µ, 1 . (86) k (p0 - p ) = k1 [p0 - p1 + k (1 - µ)]. k1 = k p0 - p . p0 - p1 + k (1 - µ) (88) (87)

, , . . p = 0. . p0 = mc mc 0 . (89) k1 = k 0 mc + k0 (1 - µ0 ) 19


, k =

h h = , (89) c 0 = 0 + C (1 - µ0 ). 1 (90)

C =
h = 0.024A. mc

(91)

. , , , , , . , , , , . . . , . , . , , , , . . 3. . , , . , . . . . , , 1 k B Te = ye mc2 1, h mc2 1. (92)

. , ( ), , n k B Te n T n e h 4 = + n + n2 . (93) 2 t mc h () n, . , 2h 3 (94) I = 2 n, c (93) , , . (77), , n = n(xe , t) : cT ne 1 n n (95) = x4 + n + n2 . t y e x2 x e e x e e : n , , n 2 , . . , , . 4. . , . , 20


, , , . . . , . (95) (82), n0 (xr ) = e
x
r

1 , -1

(96)

Te h = xe . (97) k B Tr Tr xe , xr , xr /xe = Te /Tr 108 /2.7. , (95) xr = n(xe , t) cT ne 1 = t y e x2 x e x
e 4 e

n(xe , t) xe

.

(98)

teff , Reff = cteff , . cteff ne T = Reff ne T = e . , n = e 1 y e x2 x e x
e 4 e

n0 (xr ) xe

=

e 1 d ye x2 dx r

x
r

4 r

dn0 (xr ) dxr

=

e xr ye (exr - 1)

2

xr -4 . th xr /2

(99)

(94) I = F (x) = x (101) : x22 sx (tx - 4). (103) 2 , x = 0, x , -4.1177 x = xmin = 2.2665, x = x0 = 3.8300, 6.7823 x = xmax = 6.5113, x . kB Tr /h, = hc/(xkB Tr ): min = 2.327 , 0 = 1.377 , max = 0.8101 . 1.6471. , , F (xr ) (100). , F (x) =
3

2h c2

kB T h

r

3

e F (xr ), ye x -4 . th x/2

(100)

1d dn0 (x) x4 x4 = ex x x2 dx dx (e - 1) sx =

2

(101) (102)

x x , tx = sh(x/2) th(x/2)

dx F (x) = x



d dn0 (x) dn0 (x) x4 dx = x4 dx dx dx



= 0.
0

(104)

0

0

. .
x
0



F (x)dx - =
0

F (x)dx = -0.33844, + =
x
0

4 4 /15

4 4 /15

= 1.33844.

(105)

- + + = 1. :


F (x)dx =
0 0

d dn0 (x) x x4 dx = dx dx



dn0 (x) x dx = 4 dx
4



x3 n0 (x)dx = 4
0

4 . 15

(106)

0

21


. , Mgas 0.33844kBTe T cEr = 1.5 · 1042 mc2 mp 1.33844kBTe Mgas L+ = 4 T cEr = 5.7 · 1042 mc2 mp L- = 4 k B Te 5.11 k B Te 5.11 Mgas 1014 M Mgas 1014 M (1 + z )4 /, (1 + z )4 /. (107) (108)

Er = 4.188 · 10-12 /3 , z . L+ /L- = 3.9547. . 5. . . . . , v , , Tr (v ) = Tr (1 - r ), (109)

r = vr /c, vr . , vr /c. , . . vr < 0, , vr > 0 . [15]: I = - B (Tr ) 2(kB Tr )3 T r r e = - r G(xr )e , Tr h2 c 2 G(x) = (110)

x22 x4 e x sx . (111) = 2 (e - 1) 2 . , (99) (100), , ­ (110) ( ) .
x

8 6 4 2 0 -2 -4 -6 0 5 10 15 20

12 10

G(x) F (x)

8 6 4 2 0



r



r

x

. 7. F (x) G(x).

xr 20 . 8. xr .

0

5

10

15

. 7 F (x) G(x). . 8 xr , : r = kB Tr xr /h, r = hc/(kB Tr xr ). 1011 , . . ne (r ) Te (r ), , ye (r ) = mc2 /kB Te (r ) . , (100) F , Y =
T

ne (r ) dl. ye (r ) 22

(112)


, . , x, . 6. . . [26, 62] (. [75]). [74], 1/y e = kB Te /mc2 . , , 1/y e 0.04 : x0 = 3.83 1 + 1.13 ye , x
max

= 6.51 1 +

2.15 ye

.

(113)

( ). y e , . . ´ , ye . [48] 1/ye. [90]. [81, 62]. [81] : I 47 3 11 tx- 4 2t2 + s 2 r 10 - tx + 7 x = G(x) r + + tx- 1 2+ tx- 1 r + e ye 20 20 ye 5 10 (102), , = , xr x. I /
0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20
e

42 3 tx- 3 2 1 47 tx- 10 - t2+ t3 + 7 s. 2 ye 2 5 x 10 x 5x (114) 2 2 r + t , t = vt /c, vt +

2 x

I /
0.25
2 · 10
8 8

e

0.20 0.15 0.10 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25

+0.04 +0.02 0

1.5 · 10 1 · 10 5 · 10
8 7

-0.04 -0.02

xr 20 . 9. I /e Te ( ).

0

5

10

15

xr 20 . 10. I /e r .
3

0

5

10

15

2h kB Tr c2 h . , (100), (114), , , . . = 0. , . 10 Te = 108 , . , . , , . , 2 2 , vt ( 2 = r + t ). , , 1/ye . , , , , . , . 2 [63] , e . . 9 I /e 23


, , . , . : 1) ( ) ; 2) ; 3) [49]; 4) . , , . , , . 2 2 e /ye r e . ( e /ye e r ) , (. . ). . , , , 2 e t . 4) . , , , , . . . , [6, 7], . , , [82]. , , , z = 0.5 Â 3, . , - 5e . , , . : 1) [60] [94]; 2) ; 4) , ; , ; 5) , - - [54]; 6) , [18]; 7) [38]. (. [25]). , , . 7. . . , , . , [97], [93, 41, 59], [70] . , [19], [72] [28], [29, 55]. , , . . . H0 [75, 39]. . , . . EM = n2 dl. e ne dl.

, A =

, A2 /EM . , A2 /(EM ).

24


c q0 z + (q0 - 1)( 1 + 2q0 z - 1) , (115) dad = 2 H0 q 0 (1 + z )2 q0 , z . , , , [56]. [76]. (115) , q0 , , , . , . , , [91]. Plank . z . [45]. 8. . : ( , , ), ( ) . 1972 [11] . 0.5 ( ). 1, 3.83. , , () [25]. . , 1689 vr = 170+760 /. -570 , . , H0 . ( 24 82 (/)/), 47 (/)/ , , [25]. 30 , . , , , , . , 0.1 2 10 Â 100 1 [44]. [85] , Plank 25000 , , 10000, . § 5. . . . - .

25


1. . ., . . , , . .: , 1971. 1108 . 2. . ., . . // . 1991. . 34. N 2. . 249­264. 3. . ., . ., . . // . . 1978. . 55. N 5. . 913­921. 4. . ., . . // . 1964. . 154. N 4. . 809­811. 5. . ., . . . .: , 1975. 736 . 6. . ., . . // . . 1980. . 6. N 12. . 737­741. 7. . ., . . , // / . . . .: , 1982. . 9­65. 8. . . // . : , 1985. . 141­161. 9. . . . .: - , 2001. 55 . 10. . ., . ., . . . ., , 2003, 390 . 11. . . // . . 1972. . 50. N 3. . 453­458. 12. . . . . .: , 1983. 408 . 13. . . . . . . 174. N 2. . 197­205. 14. . . // . . . . 1965. . 49. N 1(7). . 345­357. 15. . . // . . 1980. . 6. N 7. . 387­393. 16. . . // . 1957. N 1. . 83­86. 17. Adams W. S. Some results with Coud´ spectrograph of the Mount Wilson observatory // Astrophys. J. 1941. e Vol. 93. N 1. P. 11­23. 18. Aghanim N., Balland C., Silk J. Sunyaev Zel'dovich constraints from black hole­seeded proto­galaxies // Astron. Astrophys. 2000. Vol. 357. N 1. P. 1­6. 19. Audit E., Simmons J. F. L. The kinematic Sunyaev Zeldovich effect and transverse cluster velocities // Mon. Not. Roy. Astron. Soc. 1999. Vol. 305. N 1. P. L27­L30. 20. Baccigaluppi C., Perrota F. Effects of inflationary bubbles on the polarization and temperature anizotropies of the cosmic microwave background // Mon. Not. Roy. Astron. Soc. 2000. Vol. 314. N 1. P. 1­10. 21. Bennett C. L. et al. Four-year COBE DMR cosmic microwave background observations: maps and basic results // Astrophys. J. 1996. Vol. 464. N 1. P. L1­L4. 22. Bennett C. L. et al. First year Wilkinson Microwave Anisotropy Probe observations: Preliminary maps and basic results. astro-ph 0302207. 23. Beno^ A. et al. Astron. Astrophys. 2003 Vol. 399. The cosmic microwave background anisotropy power spectrum it measured by Archeops. P. L19­L24, astro-ph 0210305. Cosmological constraints from Archeops. P. L25­L30, astro-ph 0210306. 26


24. Bernardis P. de, Dubrovich V., Encrenaz P. et al. Search for LiH lines at high redshifts // Astron. Astrophys. 1993. Vol. 269. N 1/2. P. 1­6. 25. Birkinshaw M. Sunyaev Zeldovich effect // Phys. Rep. 1999. Vol. 310. N 2­3. P. 97­195. 26. Challinor A., Lasenby A. Relativistic corrections to the Sunyaev Zeldovich effect // Astrophys. J. 1998. Vol. 499. N 1. P. 1­6. 27. Chen D., Wu X. P., Jiang D. R. Time delay effect on the cosmic background radiation from static gravitational potential of clusters // Astrophys. J. 2000. Vol. 544. N 1. P. 1­5. 28. Cooray A. An SZ temperature decrement X­ray luminosity relation for galaxy clusters // Mon. Not. Roy. Astron. Soc. 1999. Vol. 307. N 4. P. 841­848. 29. Cooray A., Hu W., Tegmark M. Large­scale Sunyaev Zeldovich effect: measuring statistical properties with multifrequency maps // Astrophys. J. 2000. Vol. 540. N 1. P. 1­13. 30. Corey B. E., Wilkinson D. T. A measurement of the cosmic microwave background anisotropy at 19 GHz // Bull. Amer. Astron. Soc. 1976. Vol. 8. P. 351. 31. Dicke R. H., Peebles P. J. E., Roll P. G., Wilkinson D. T. Cosmic black-body radiation // Astrophys. J. 1965. Vol. 142. N 1. P. 414­419. 32. Dolgov A. D., Doroshkevich A. G., Novikov D. I., Novikov I. D. Classification of singular points in polarization field of cosmic microwave background and eigenvectors of Stokes matrix // . . . . 1999. . 69. N 6. . 395­401. 33. Le Dour M., Douspis M., Bartlett J. G., Blanchard A. Cosmological constraints from the cosmic microwave background // Astron. Astrophys. 2000. Vol. 364. P. 369­376. 34. Dubrovich V. K., Lipovka A. A. Distortion of the cosmic blackbody spectrum due to luminescence of H 2 D Astron. Astrophys. 1995. Vol. 296. N 2. P. 301­306.
+

//

35. Durrer R. Cosmic microwave background anisotropies from scaling seeds: fit to odservational data. astroph/9706215. 36. Durrer R. Physics of cosmic microwave background anisotropies and primordial fluctuations. astro-ph/0109274 v1 17 Sep 2001. 37. Durrer R. The theory of CMB anisotropies. astro-ph/0109522 v1 27 Sep 2001. 38. Ensslin T. A., Kaiser C. R. Comptonization of the cosmic microwave background by relativistic plasma // Astron. Astrophys. 2000. Vol. 360. N 2. P. 417­430. 39. Fan Z., Chiueh T. Determining the geometry and cosmological parameters of the universe through Sunyaev Zeldovich effect cluster counts // Astrophys. J. 2001. Vol. 550. N 2. P. 547­553. 40. Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A., Write E. L. The cosmic microwave background spectrum from the full COBE FIRAS data set. Ap.J. 473, 576, 1996. 41. Grego L., Carlstrom J. E., Joy M. K. et al. The Sunyaev Zeldovich effect in Abell 370 // Astrophys. J. 2000. Vol. 539. N 1. P. 39­51. 42. Halverson N. W. et al. DASI first results: a measurement of the cosmic microwave background angular power spectrum. astro-ph/0104489 v1 30 Apr 2001 43. Hinshaw G. et al. First year Wilkinson Microwave Anisotropy Probe observations: The angular power spectrum. astro-ph 0302217. 44. Holder G. P., Mohr J. J., Carlstrom J. E. et al. Expectations for an interferometric Sunyaev Zeldovich effect survey for galaxy clusters // Astrophys. J. 2000. Vol. 544. N 2. P. 629­635. 45. Hu W. Reionization revisited: secondary cosmic microwave background anisotropies and polarization // Astrophys. J. 2000. Vol. 529. N 1. P. 12­25. 46. Hu, W., Dodelson S. Cosmic microwave background anisotropies // Ann. Rev. Astron. Astrophys. 2002. Vol. 40. P. 171­216. 27


47. Hu W., Sugiyama N. Toward understanding CMB anisotropies and their implications. Phys.Rev. D. 1995. Vol. 51. N 6. P. 2599­2630. 48. Itoh N., Kohyama Y., Nozawa S. Relativistic corrections to the Sunyaev Zeldovich effect for clusters of galaxies // Astrophys. J. 1998. Vol. 502. N 1. P. 7­15. 49. Itoh N., Nozawa S., Kohyama Y. Relativistic corrections to the Sunyaev Zeldovich effect for clusters of galaxies. III. Polarization effect // Astrophys. J. 2000. Vol. 533. N 2. P. 588­593. 50. Kogut A. et al. First year Wilkinson Microwave Anisotropy Probe observations: TE-polarization. astro-ph 0302213. 51. Lahav O., Bridle S. L., Hobson M. P. et al. Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements // Mon. Not. Roy. Astron. Soc. 2000. Vol. 315. N 4. P. L45­L49. 52. Lasenby A. N., Doran C. J. L., Hobson M. P. et al. Microwave background anisotropies and non-linear structures. I. Improved theoretical models // Mon. Not. Roy. Astron. Soc. 1999. Vol. 302. N 3. P. 748­756. 53. Lee A. T. et al. A high spacial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. astro-ph/0104459. 54. Ma jumdar S., Nath B. B. On cooling flows and the Sunyaev Zeldovich effect // Astrophys. J. 2000. Vol. 542. N 2. P. 597­607. 55. Ma jumdar S., Subrahmanyan R. Constraints on structure models from Sunyaev Zel'ovich effect // Mon. Not. Roy. Astron. Soc. 2000. Vol. 312. N 4. P. 724­732. 56. Mauskopf P. D. et al. A determination of the Hubble constant using measurements of X­ray emission and Sunyaev Zeldovich effect at millimeter wavelengths in the cluster Abell 1835 // Astrophys. J. 2000. Vol. 538. N 2. P. 505­516. 57. McKellar A. Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space // Publ. Dominion Astrophys. Observ. Victoria. 1941. Vol. 7. N 15. P. 251­272. 58. Miller A. D. The CMB contemporary measurements and cosmology. astro-ph/0112052.

59. Nagai D., Sulkanen M. E., Evrard A. E. A multiphase model for the intracluster medium // Mon. Not. Roy. Astron. Soc. 2000. Vol. 316. N 1. P. 120­128. 60. Natarayan P., Sigurdsson S., Sunyaev Zeldovich decrements with no clusters? // Mon. Not. Roy. Astron. Soc. 1999. Vol. 302. N 2. P. 288­292. 61. Netterfield C. B. et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. astro-ph/0104460. 62. Nozawa S., Itoh N., Kohyama Y. Relativistic corrections to the Sunyaev Zeldovich effect for clusters of galaxies. II. Inclusion of peculiar velocities // Astrophys. J. 1998. Vol. 508. N 1. P. 17­24. 63. Nozawa S., Itoh N., Kawana Y., Kohyama Y. Relativistic corrections to the Sunyaev Zeldovich effect for clusters of galaxies. IV. Analitic fitting formula for the numerical results // Astrophys. J. 2000. Vol. 536. N 1. P. 31­35. 64. Ohm E. A. Pro ject ECHO. Receiving system // Bell Syst. Techn. J. 1961. Vol. 40. N 4. P. 1065­1094. 65. Peacock J. Cosmological Physics. Cambridge: Cambridge university press, 1999. 682 p. 66. Peebles P. J. E. Principles of Physical Cosmology. Prinston: Prinston university press, 1993. 718 p. 67. Peebles P. J. E., Yu I. T. Primeval adiabatic perturbation in an expanding universe // Astrophys. J. 1970. Vol. 162. N 3. P. 815­836. 68. Penzias A. A., Wilson R. W. A measurement of excess antenna temperature at 4080 Mc/s // Astrophys. J. 1965. Vol. 142. N 1. P. 419­421. 69. Prunet S., Sethi S.K., Bouchet F. R. Cosmic microwave background polarization data and galactic foregrounds: estimations of cosmological parameters // Mon. Not. Roy. Astron. Soc. 2000. Vol. 314. N 2. P. 348­353. 70. Puy D., Grenacher L., Jetzer Ph., Signore M. Asphericity of galaxy clusters and the Sunyaev Zel'dovich effect // Astron. Astrophys. 2000. Vol. 363. N 2. P. 415­424. 28


71. Readhead A. C. S., Lawrence C. R. Observations of the isotropy of the cosmic microwave background radiation // Ann. Rev. Astron. Astrophys. 1992. Vol. 30. P. 653­703. 72. Reichart D. E., Castander F. J., Nichol R. C. A Bayesian analysis of the X-ray cluster luminosity­temperature relation // Astrophys. J. 1999. Vol. 516. N 1. P. 1­8. 73. Rephaeli Y. Comptonization of the cosmic microwave background: the Sunyaev Zeldovich effect // Ann. Rev. Astron. Astrophys. 1995. Vol. 33. P. 541­579. 74. Rephaeli Y. Cosmic microwave background comptonization by hot intracluster gas // Astrophys. J. 1995. Vol. 445. N 1. P. 33­36. 75. Rephaeli Y. The Sunyaev Zeldovich effect and its cosmological significance. astro-ph/0110510. 76. Rephaeli Y., Yankovich D. Relativistic corrections in the determination of H 0 from X­ray and Sunyaev Zeldovich measurements // Astrophys. J. 1997. Vol. 481. N 2. P. L55­L58. 77. Romeo G., Ali S., Femenia B., Limon M. et al. Millimetric ground based observation of CMBR anisotropy at = + 28 . astro-ph/0011226. 78. Sachs R. K., Wolfe A. M. Perturbations of a cosmological model and angular variations of the microwave background // Astrophys. J. 1967. Vol. 147. N 1. P. 73­90. ¨ on 79. Sanz J. L., Argueso F., Cay´ L. et al. Wavelets applied to cosmic microwave background maps: a multiresolution analysis for denoising // Mon. Not. Roy. Astron. Soc. 1999. Vol. 309. N 3. P. 672­680. 80. Sanz J. L., Barreiro R. B., Cay´ L. et al. Analysis of CMB maps with 2D wavelets // Astron. Astrophys. Suppl. on Ser. 1999. Vol. 140. N 1. P. 99­105. 81. Sazonov S. Y., Sunyaev R. A. Cosmic microwave background radiation in the direction of a moving cluster of galaxies with hot gas: relativistic corrections // Astrophys. J. 1998. Vol. 508. N 1. P. 1­5. 82. Sazonov S. Y., Sunyaev R. A. Microwave polarization in the direction of galaxy clusters induced by the CMB quadrupole anisotropy // Mon. Not. Roy. Astron. Soc. 1999. Vol. 310. N 3. P. 765­772. 83. Seljak U., Zaldarriaga M. A line-of-sight integration approach to cosmic microwave background anisotropies // Astrophys. J. 1996. Vol. 469. N 1. P. 437­444. 84. Silk J. Cosmic black-body radiation and galaxy formation // Astrophys. J. 1968. Vol. 151. N 2. P. 459­471. 85. Silva A. C. da, Barbosa D., Liffle A. R., Thomas P. A. Hydrodynamical simulations of the Sunyaev Zel'dovich effect // Mon. Not. Roy. Astron. Soc. 2000. Vol. 317. N 1. P. 37­44. 86. Smoot G. F., Gorenstein M. V., Muller R. A. Detection of anisotropy in the cosmic blackbody radiation // Phys. Rev. Let. 1977. Vol. 39. N 14. P. 898­901. 87. Smoot G. F., Bennett C. L., Kogut A. et al. Structure in the COBE DMR first year maps. Ap.J.L. 396, L1, 1992. 88. Spergel D.N. et al. First year Wilkinson Microwave Anisotropy Probe observations: Determination of cosmlogical parameters. astro-ph 0302209. 89. Sunyaev R. A., Zel'dovich Ya. B. Microwave background radiation as a probe of the contemporary structure and history of the universe // Ann. Rev. Astron. Astrophys. 1980. Vol. 18. P. 537­560. 90. Sunyaev R. A., Zel'dovich Ya. B. The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement // Mon. Not. Roy. Astron. Soc. 1980. Vol. 190. N 2. P. 413­420. 91. Valageas P., Balbi A., Silk J. Secondary CMB anisotropies from the kinetic SZ effect // Astron. Astrophys. 2001. Vol. 367. N 1. P. 1­17. 92. White M., Scott D., Silk J. Anisotropies in the cosmic microwave background // Ann. Rev. Astron. Astrophys. 1994. Vol. 32. P. 319­370. 93. Xue Y. -J., Wu X. -P. Reconsruction of radial temperature profiles of galaxy clusters // Astron. Astrophys. 2000. Vol. 360. N 3. P. L43­L46.

29


94. Yamada M., Sugiyama N. The Sunyaev Zeldovich effect by cocoons of radio galaxies // Astrophys. J. 1999. Vol. 522. N 1. P. 66­73. 95. Zel'dovich Ya. B., Sunyaev R. A. The interaction of matter and radiation in a hot-model universe // Astrophys. Space Sci. 1969. Vol. 4. N 3. P. 285­300 (.), 301­316 (.) 96. Zel'dovich Ya. B., Sunyaev R. A. The interaction of matter and radiation in a hot-model universe. II // Astrophys. Space Sci. 1969. Vol. 7. N 1. P. 20­30. 97. Zhang T. -J., Wu X. -P. A comparison of central temperatures of the intracluster gas from X­ray and Sunyaev Zeldovich measurements // Astrophys. J. 2000. Vol. 545. N 1. P. 141­144. § 1. () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. . . . . . . . . . . . . . . . . . . . . . . . . . 2. . . . . . . 3. . . . . . . . . . . . . . . . . . . . . . . § 2. 1. 2. 3. 4. 5. 6. .... .... .... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ­ 2 3 4 ­ 5 6 7 8 9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

§ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . § 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 .­ .­ .­ .­ 12 13 13 14 17 18 .­ 19 20 20 22 23 24 25 25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

30