Книга | Страницы для поиска |
Kadison R.V., Ringrose J.R. - Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 95 |
Agarwal R.P. - Difference Equations and Inequalities. Theory, Methods and Applications. | 10, 857 |
Apostol T.M. - Calculus (vol 1) | 575 |
Hunter J.K., Nachtergaele B. - Applied Analysis | 153 |
Rudin W. - Principles of Mathematical Analysis | 186, 187 |
Reed M., Simon B. - Methods of Modern mathematical physics (vol. 1) Functional analysis | 46 |
Apostol T.M. - Calculus (vol 2) | 29 |
Bazant Z.P., Cedolin L. - Stability of structures : elastic, inelastic, fracture, and damage theories | 21 |
Lang S. - Algebra | 679 |
Bulirsch R., Stoer J. - Introduction to numerical analysis | 88 |
Mauch S. - Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 771, 802 |
Hayek S.I. - Advanced mathematical methods in science and engineering | 135, 137, 162, 164, 166, 333 |
Conte S.D., de Boor C. - Elementary numerical analysis - an algorithmic approach | 269 |
Meyer C.D. - Matrix analysis and applied linear algebra | 299 |
Silverman J.H. - The arithmetic of elliptic curves | 345 |
Bergman S. - The Kernel Function and Conformal Mapping | 2, 119 |
Rudin W. - Real and Complex Analysis | 81, 91 |
Weinberger H.F. - First course in partial defferential equations with complex variables and transform methods | 72 |
Widder D.V. - Advanced calculus | 324, 327 |
Bhanu B., Pavlidis I. - Computer Vision Beyond the Visible Spectrum | 283 |
Benson D. - Mathematics and music | 30, 33 |
Katznelson Y. - Introduction to Harmonic Analysis | 3, 34 |
Birman M.S., Solomyak M.Z. - Spectral Theory of Self-Adjoint Operators in Hilbert Space | 23 |
Curtain R.F., Pritchard A.J. - Functional Analysis in Modern Applied Mathematics | 61 |
Debnath L., Mikusinski P. - Introduction to Hilbert Spaces with Applications | 117 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of Mathematics, Volume III: Analysis | 398, 399, 401 |
Kythe P.K., Schaferkotter M.R. - Partial Differential Equations and Mathematica | 88 |
Hogben L. - Handbook of Linear Algebra | 5-4 |
Polyanin A., Manzhirov A.V. - Handbook of Mathematics for Engineers and Scientists | 358 |
Shafarevich I.R., Kostrikin A.I. (ed.) - Basic Notions of Algebra | 164 |
Debnath L. - Linear Partial Differential Equations for Scientists and Engineers | 173 |
Tompkins H.G., Irene E.A. - Handbook of Ellipsometry | 15, 42, 246, 468, 469, 488, 492, 504, 505, 511, 512, 514, 515, 520, 522, 682, 683, 691 |
Young R.M. - An Introduction to Non-Harmonic Fourier Series, Revised Edition | 6, 9 |
Strauss W.A. - Partial Differential Equations: An Introduction | 102-104, 113, 116, 248 |
Robert A. - Non-Standard Analysis | 8.2.1 |
Ablowitz M.J., Fokas A.S. - Complex Variables: Introduction and Applications | 269 |
Lang S. - Diophantine Geometry | 130 |
Goldberg M.A. (ed.) - Solution Methods for Integral Equations | 229 |
Reed M., Simon B. - Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 46 |
Atkinson K.E., Han W. - Theoretical Numerical Analysis: A Functional Analysis Framework | 162 |
Sandor J., Mitrinovic D.S., Crstici B. - Handbook of Number Theory II | 184, 544 |
Kahane J.P., Bollobas B. (Ed) - Some Random Series of Functions | xii, 47, 60 |
Kaczor W.J. - Problems in Mathematical Analysis III: Integration | 62 |
Polya G. - Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 75, VI 29 76 |
Lang S.A. - Undergraduate Analysis | 294, 295 |
Altmann S.L. - Band Theory of Solids: An Introduction from the Point of View of Symmetry | 81 (4-9.19) |
Iwaniec H., Kowalski E. - Analytic number theory | 174 |
Lang S. - Real Analysis | 157 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. - Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 159 |
Sokolnikoff I.S. - Higher Mathematics for Engineers and Physicists | 65 |
Rudin W. - Real and complex analysis | 82, 91 |
Lay D.C. - Linear Algebra And Its Applications | 398 |
Zauderer E. - Partial Differential Equations of Applied Mathematics | 180, 209, 338, 518 |
Kuznetsov N., Mazya V., Vainberq B. - Linear Water Waves: A Mathematical Approach | 462, 476, 482, 483 |
Stahl H., Totik V. - General Orthogonal Polynomials | 212 |
Shimura G. - Introduction to Arithmetic Theory of Automorphic Functions | 29 |
Sokolnikoff I.S. - Mathematics of Physics and Modern Engineering | 175, 196 |
Elliot P.D.T.A. - Probabilistic Number Theory One | 66 |
Greenberg M.D. - Advanced engineering mathematics | 851 |
Apostol T.M. - Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 575 |
Berndt B.C., Evans R.J., Williams K.S. - Gauss and Jacobi Sums | 211, 292 |
Karman T., Biot A.M. - Mathematical Methods in Engineering | 325-327 |
Blyth T.S., Robertson E.F. - Further Linear Algebra | 20 |
Bachman G., Beckenstein E. - Fourier And Wavelet Analysis | 104, 112, 144 |
Stakgold I. - Green's Functions and Boundary Value Problems | 128, 279 |
Helemskii A.Ya. - Lectures and Exercises on Functional Analysis, Vol. 233 | 73, 413 |
Kadison R.V., Ringrose J.R. - Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 95 |
Chabert J.-L., Weeks C., Barbin E. - A History of Algorithms: From the Pebble to the Microchip | 422, 425 |
Strichartz R.S. - The way of analysis | 522, 532, 676 |
Kolmogorov A.N., Fomin S.V. - Introductory real analysis | 149, 152, 165 |
Chung F.R.K. - Spectral Graph Theory | 43 |
Natterer F. - The Mathematics of Computerized Tomography (Classics in Applied Mathematics) | 182 |
Tricomi F.G. - Integral equations | 85ff. |
Young R.M. - An Introduction to Nonharmonic Fourier Series | 6, 9 |
Feller W. - Introduction to probability theory and its applications (Volume II) | 628, 634, 647-648 |
Pope S.B. - Turbulent Flows | 684 |
Babin A.V., Vishik M.I. - Attractors of Evolution Equations | 15 |
Silverman J.H. - Advanced Topics in the Arithmetic of Elliptic Curves | see also q-expansion |
Miller W. - Symmetry Groups and Their Applications | 412 |
Hamming R.W. - Numerical methods for scientists and engineers | 447 |
Mclachlan D. - X-ray crystal structure | 3, 25 |
Avery J. - Creation and Annihilation Operators | 17, 102 |
Stahl A. - Physics with tau leptons | 17, 102 |
Olver P.J., Shakiban C. - Applied linear. algebra | 286 |
Clemens C.H. - Scrapbook of Complex Curve Theory | 136 |
Kaiser D. - A Friendly Guide to Wavelets | 27 |
Kreyszig E. - Advanced engineering mathematics | 480, 487 |
Slater J.C. - Quantum Theory of Atomic Structure vol1 | 87 |
Simmons G.F. - Introduction to topology and modern analysis | 256, 257 |
Elliot P.D.T.A. - Probabilistic Number Theory Two: Central Limit Theorems | 66 |
Clausen M. - Fast Fourier transforms | 164 |
Cotterill R.M.J. - Biophysics: An Introduction | 86 |
Luke Y.L. - Mathematical Functions and Their Approximations | 430, 442 |
Saxe K. - Beginning functional analysis | 82 |
Lang S. - Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 98, 176 |
Beutler G. - Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | II 397 |
Smithies F., Hall P. (ed.) - INTEGRAL EQUATIONS (No. 49) | 56 |
Kaiser G. - Friendly Guide to Wavelets | 27 |
Carl D. Meyer - Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 299 |
Christensen O., Christensen K.L. - Approximation Theory: From Taylor Polynomials to Wavelets | 52 |
Graham J., Baldock R. - Image processing and analysis. A practical approach | 94 |
Rektorys K. - Survey of applicable mathematics | 698, 703, 1005 |
Adomian G. - Stochastic Systems | 77 |
Browder A. - Mathematical Analysis: An Introduction | 164 |
Lang S. - Algebra | 679 |
Sutton O.G. - Mathematics in action | 101 |
Marks R.J.II. - The Joy of Fourier | 2, 17, 72, 98, 101, 741 |
Kreyszig E. - Introductory functional analysis with applications | 157, 165 |
Harman T.L., Dabney J.B., Richert N.J. - Advanced Engineering Mathematicas with MATLAB | 92, 362 |
Shilov G.E. - An introduction to the theory of linear spaces | 143, 263 |
Courant R., Hilbert D. - Methods of Mathematical Physics. Volume 1 | 51, 424 |
Nehari Z. - Conformal mapping | 244, 373 |
Aliprantis C. - Principles of real analysis | 299, 310 |
Kythe P.K., Puri P. - Partial differential equations and Mathematica | 88 |
Hille E. - Methods in classical and functional analysis | 69, 149 |
Hamming R.W. - Numerical Methods For Scientists And Engineers | 68, 233 |
Lukacs E. - Characterisic functions | 43, 74 |
Hartman S., Mikusinski J. - The theory of Lebesgue measure and integration | 122 |
Vladimirov V. S. - Equations of mathematical physics | 16 |
Demidovich B. (ed.) - Problems in mathematical analysis | 318, 393, 394 |
Courant R., John F. - Introduction to Calculus and Analysis. Volume 1 | 587, 594, 604 |
Meijer P.H.E. - Group Theory: The Application to Quantum Mechanics | 18 |
Fox L., Parker I.B. - Chebyshev Polynomials in Numerical Analysis | 22, 24, 43, 44 |
Kolmogorov A.N., Fomin S.V. - Measure, Lebesgue Integrals, and Hilbert Space | 110 |
Lang S. - Undergraduate analysis | 294, 295 |
Lighthill M. J. - Introduction to Fourier analysis and generalized functions | 3-7, 60-75 |
Stakgold I. - Green's functions and boundary value problems | 128, 279 |
Hewitt E., Stromberg K. - Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 237, 249 |
Kestelman H. - Modern theories of integration | 229 |
Rektorys K. (ed.) - Survey of Applicable Mathematics | 698, 703, 1005 |
Kirillov A.A., Gvishiani A.D., McFaden H.H. - Theorems and Problems in Functional Analysis | 107 |
Hinrichsen D., Pritchard A. - Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 744 |
Cloud M.J., Drachman B.C. - Inequalities: with applications to engineering | 65 |
Howes N.R - Modern Analysis and Topology | 353 |
Bear H.S. - A Primer of Lebesgue Integration | 157 |
Strang G. - Introduction to Applied Mathematics | 266 |
Behnke H., Bachmann F., Fladt K. - Fundamentals of mathematics. Volume III. Analysis | 398, 399, 401 |
Moore F. - Elements of Computer Music | 210 |
Zeidler E. - Applied Functional Analysis: Applications to Mathematical Physics | 195, 200 |
Wrede R.C., Spiegel M. - Theory and problems of advanced calculus | 337, 345 |
Apostol T.M. - Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 29 |
Cohen G.L. - A Course in Modern Analysis and Its Applications | 299 |
Greiner W. - Classical mechanics. Systems of particles and hamiltonian dynamics | 126 |
Kozlov V., Mazya V., Rossmann J. - Elliptic boundary value problems in domains with point singularities | 31 |
Collatz L. - Functional analysis and numerical mathematics | 69 |
Rektorys K. - Survey of Applicable Mathematics.Volume 2. | I 673, I 678, II 336 |
Gullberg J. - Mathematics: from the birth of numbers | 910 |
Gohberg I., Goldberg S., Kaashoek M. - Classes of linear operators. (volume 2) | 562 |
Lee A. - Mathematics Applied to Continuum Mechanics | 556 |
Johnson W.C. - Mathematical and physical principles of engineering analysis | 241, 242-249 |
Courant R. - Differential and Integral Calculus, Vol. 1 | 438 |
Davis P., Hersh R. - The Mathematical Experience | 260 |
Ivanov O.A. - Easy as Pi?: An Introduction to Higher Mathematics | 60 |
Demidovich B.P., Maron I.A. - Computational Mathematics | 213 |
Hubbard B. - The World According to Wavelets: The Story of a Mathematical Technique in the Making | 9, 12-13, 17-18, 97-100, 104, 114-116, 185 |
Cheney W. - Analysis for Applied Mathematics | 72 |
Stakgold I. - Boundary value problems of mathematical physics | 125 |
Moiseiwitsch B.L. - Integral Equations | 77, 91 |